
Takehiko Satoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1950774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New models of Jupiter's magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 1998, 103, 11929-11939.	3.3	384
2	AKATSUKI returns to Venus. Earth, Planets and Space, 2016, 68, .	2.5	89
3	Solar Wind Control of Jupiter's H+3Auroras. Icarus, 1996, 120, 437-442.	2.5	79
4	Emission Source Model of Jupiter's H+3Aurorae: A Generalized Inverse Analysis of Images. Icarus, 1996, 122, 1-23.	2.5	75
5	Overview of Venus orbiter, Akatsuki. Earth, Planets and Space, 2011, 63, 443-457.	2.5	72
6	Planet-C: Venus Climate Orbiter mission of Japan. Planetary and Space Science, 2007, 55, 1831-1842.	1.7	67
7	Longâ€ŧerm variation in the cloudâ€ŧracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images. Journal of Geophysical Research E: Planets, 2013, 118, 37-46.	3.6	67
8	Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki. Earth, Planets and Space, 2017, 69, .	2.5	60
9	Topographical and Local Time Dependence of Large Stationary Gravity Waves Observed at the Cloud Top of Venus. Geophysical Research Letters, 2017, 44, 12,098.	4.0	46
10	Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique. Planetary and Space Science, 2012, 60, 207-216.	1.7	43
11	How waves and turbulence maintain the super-rotation of Venus' atmosphere. Science, 2020, 368, 405-409.	12.6	41
12	Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki. Nature Geoscience, 2017, 10, 646-651.	12.9	35
13	Planetary-scale streak structure reproduced in high-resolution simulations of the Venus atmosphere with a low-stability layer. Nature Communications, 2019, 10, 23.	12.8	35
14	Stationary waves and slowly moving features in the night upper clouds of Venus. Nature Astronomy, 2017, 1, .	10.1	35
15	Ultraviolet imager on Venus orbiter Akatsuki and its initial results. Earth, Planets and Space, 2018, 70, 23.	2.5	34
16	Vertical propagation of planetary-scale waves in variable background winds in the upper cloud region of Venus. Icarus, 2015, 248, 560-568.	2.5	31
17	Venus looks different from day to night across wavelengths: morphology from Akatsuki multispectral images. Earth, Planets and Space, 2018, 70, 24.	2.5	31
18	Performance of Akatsuki/IR2 in Venus orbit: the first year. Earth, Planets and Space, 2017, 69, .	2.5	28

Τακεμικό Satoh

#	Article	IF	CITATIONS
19	Global Structure of Thermal Tides in the Upper Cloud Layer of Venus Revealed by LIR on Board Akatsuki. Geophysical Research Letters, 2019, 46, 9457-9465.	4.0	26
20	Return to Venus of the Japanese Venus Climate Orbiter AKATSUKI. Acta Astronautica, 2014, 93, 384-389.	3.2	24
21	Absolute calibration of brightness temperature of the Venus disk observed by the Longwave Infrared Camera onboard Akatsuki. Earth, Planets and Space, 2017, 69, .	2.5	21
22	Nightside Winds at the Lower Clouds of Venus with Akatsuki/IR2: Longitudinal, Local Time, and Decadal Variations from Comparison with Previous Measurements. Astrophysical Journal, Supplement Series, 2018, 239, 29.	7.7	21
23	Planetary cale Variations in Winds and UV Brightness at the Venusian Cloud Top: Periodicity and Temporal Evolution. Journal of Geophysical Research E: Planets, 2019, 124, 2635-2659.	3.6	21
24	Overview of Akatsuki data products: definition of data levels, method and accuracy of geometric correction. Earth, Planets and Space, 2017, 69, .	2.5	20
25	New cloud morphologies discovered on the Venus's night during Akatsuki. Icarus, 2019, 333, 177-182.	2.5	20
26	Initial products of Akatsuki 1-μm camera. Earth, Planets and Space, 2018, 70, .	2.5	17
27	ldentification of Jupiter's magnetic equator through H3+ ionospheric emission. Nature Astronomy, 2018, 2, 773-777.	10.1	17
28	A Longâ€Lived Sharp Disruption on the Lower Clouds of Venus. Geophysical Research Letters, 2020, 47, e2020GL087221.	4.0	17
29	Science requirements and description of the 1 εm camera onboard the Akatsuki Venus Orbiter. Earth, Planets and Space, 2011, 63, 487-492.	2.5	16
30	Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images. Icarus, 2014, 243, 386-399.	2.5	16
31	Venus' cloud top wind study: Coordinated Akatsuki/UVI with cloud tracking and TNG/HARPS-N with Doppler velocimetry observations. Icarus, 2020, 335, 113418.	2.5	16
32	The nightside cloud-top circulation of the atmosphere of Venus. Nature, 2021, 595, 511-515.	27.8	14
33	Venus' clouds as inferred from the phase curves acquired by IR1 and IR2 on board Akatsuki. Icarus, 2015, 248, 213-220.	2.5	13
34	Dayside cloud top structure of Venus retrieved from Akatsuki IR2 observations. Icarus, 2020, 345, 113682.	2.5	13
35	Cloud structure in Venus middleâ€ŧo″ower atmosphere as inferred from VEX/VIRTIS 1.74 <i>μ</i> m data. Journal of Geophysical Research, 2009, 114, .	3.3	12
36	Development and in-flight calibration of IR2: 2-μm camera onboard Japan's Venus orbiter, Akatsuki. Earth, Planets and Space, 2016, 68, .	2.5	11

Τακεμικό Satoh

0

#	Article	IF	CITATIONS
37	A change of upper cloud structure in Jupiter's South Equatorial Belt during the 1989–1990 event. Journal of Geophysical Research, 1994, 99, 8425.	3.3	10
38	Brightness modulations of our nearest terrestrial planet Venus reveal atmospheric super-rotation rather than surface features. Nature Communications, 2020, 11, 5720.	12.8	10
39	Constraints on Venus Lightning From Akatsuki's First 3 Years in Orbit. Geophysical Research Letters, 2019, 46, 7955-7961.	4.0	9
40	Retrieval of jovian cloud structure from the Cassini ISS limb-darkening data. Icarus, 2013, 222, 100-121.	2.5	8
41	Initiation of a lightning search using the lightning and airglow camera onboard the Venus orbiter Akatsuki. Earth, Planets and Space, 2018, 70, 88.	2.5	8
42	The Great Cold Spot in Jupiter's upper atmosphere. Geophysical Research Letters, 2017, 44, 3000-3008.	4.0	7
43	Venus night-side photometry with "cleaned―Akatsuki/IR2 data: Aerosol properties and variations of carbon monoxide. Icarus, 2021, 355, 114134.	2.5	4
44	Correlation of Venusian Mesoscale Cloud Morphology Between Images Acquired at Various Wavelengths. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
45	Editorial: Topical Collection on Venus. Space Science Reviews, 2018, 214, 1.	8.1	2

46 Akatsuki: Pioneering the planetary meteorology of Venus. , 2019, , 10-13.