
Mark A Cane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/195077/publications.pdf Version: 2024-02-01

MARK & CANE

#	Article	lF	CITATIONS
1	A Model El Niñ–Southern Oscillation. Monthly Weather Review, 1987, 115, 2262-2278.	1.4	1,578
2	On the Weakening Relationship Between the Indian Monsoon and ENSO. Science, 1999, 284, 2156-2159.	12.6	1,325
3	Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3241-3246.	7.1	959
4	Predictability of El Niño over the past 148 years. Nature, 2004, 428, 733-736.	27.8	511
5	An Ocean Dynamical Thermostat. Journal of Climate, 1996, 9, 2190-2196.	3.2	492
6	Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature, 2001, 411, 157-162.	27.8	466
7	A review of the predictability and prediction of ENSO. Journal of Geophysical Research, 1998, 103, 14375-14393.	3.3	455
8	Twentieth-Century Sea Surface Temperature Trends. Science, 1997, 275, 957-960.	12.6	443
9	The evolution of El Niño, past and future. Earth and Planetary Science Letters, 2005, 230, 227-240.	4.4	304
10	The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science, 2015, 350, 320-324.	12.6	287
11	Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 2015, 8, 339-345.	12.9	277
12	Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nature Climate Change, 2019, 9, 517-522.	18.8	270
13	Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22512-22517.	7.1	221
14	El Niño prediction and predictability. Journal of Computational Physics, 2008, 227, 3625-3640.	3.8	134
15	El Niño's tropical climate and teleconnections as a blueprint for pre-lce Age climates. Paleoceanography, 2002, 17, 11-1-11-11.	3.0	133
16	A model of the tropical Pacific sea surface temperature climatology. Journal of Geophysical Research, 1988, 93, 1265-1280.	3.3	126
17	Unraveling El Niño's impact on the East Asian Monsoon and Yangtze River summer flooding. Geophysical Research Letters, 2016, 43, 11,375.	4.0	125
18	A Study of Self-Excited Oscillations of the Tropical Ocean-Atmosphere System. Part I: Linear Analysis. Journals of the Atmospheric Sciences, 1990, 47, 1562-1577.	1.7	119

MARK A CANE

#	Article	IF	CITATIONS
19	Indian summer monsoon rainfall and its link with ENSO and Indian Ocean climate indices. International Journal of Climatology, 2007, 27, 179-187.	3.5	117
20	Synchronous crop failures and climate-forced production variability. Science Advances, 2019, 5, eaaw1976.	10.3	105
21	Modeling Sea Level During El Niño. Journal of Physical Oceanography, 1984, 14, 1864-1874.	1.7	96
22	The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophysical Research Letters, 2017, 44, 2472-2480.	4.0	94
23	ENSO in the CMIP5 Simulations: Life Cycles, Diversity, and Responses to Climate Change. Journal of Climate, 2017, 30, 775-801.	3.2	93
24	Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble. Climate Dynamics, 2018, 50, 3687-3698.	3.8	91
25	Low-Pass Filtering, Heat Flux, and Atlantic Multidecadal Variability. Journal of Climate, 2017, 30, 7529-7553.	3.2	75
26	Hindcasts of Sea Level Variations during the 1982–83 El Niño. Journal of Physical Oceanography, 1985, 15, 213-221.	1.7	69
27	The role of ENSO in determining climate and maize yield variability in the U.S. cornbelt. International Journal of Climatology, 1999, 19, 877-888.	3.5	65
28	A Kalman Filter Analysis of Sea Level Height in the Tropical Pacific. Journal of Physical Oceanography, 1989, 19, 773-790.	1.7	64
29	New observational evidence for a positive cloud feedback that amplifies the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 2016, 43, 9852-9859.	4.0	57
30	Early Pliocene (pre–Ice Age) El Niño–like global climate: Which El Niño?. , 2007, 3, 337.		56
31	Toward Predicting Changes in the Land Monsoon Rainfall a Decade in Advance. Journal of Climate, 2018, 31, 2699-2714.	3.2	55
32	Decadal predictions in demand. Nature Geoscience, 2010, 3, 231-232.	12.9	53
33	Response to Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation― Science, 2016, 352, 1527-1527.	12.6	40
34	Persistent Discrepancies between Observed and Modeled Trends in the Tropical Pacific Ocean. Journal of Climate, 2022, 35, 4571-4584.	3.2	39
35	Trans-Pacific ENSO teleconnections pose a correlated risk to agriculture. Agricultural and Forest Meteorology, 2018, 262, 298-309.	4.8	37
36	Diversity, Nonlinearity, Seasonality, and Memory Effect in ENSO Simulation and Prediction Using Empirical Model Reduction. Journal of Climate, 2016, 29, 1809-1830.	3.2	34

MARK A CANE

#	Article	IF	CITATIONS
37	Commentary on the Syria case: Climate as a contributing factor. Political Geography, 2017, 60, 245-247.	2.5	32
38	Accounting for Parameter Uncertainties in Model Verification: An Illustration with Tropical Sea Surface Temperature. Journal of Physical Oceanography, 1989, 19, 815-830.	1.7	29
39	The impact of NSCAT winds on predicting the 1997/1998 El Niño: A case study with the Lamont-Doherty Earth Observatory model. Journal of Geophysical Research, 1999, 104, 11321-11327.	3.3	27
40	Life cycles of agriculturally relevant <scp>ENSO</scp> teleconnections in North and South America. International Journal of Climatology, 2017, 37, 3297-3318.	3.5	23
41	Sensitivity of the tropical Pacific Ocean simulation to the temporal and spatial resolution of wind forcing. Journal of Geophysical Research, 1999, 104, 11261-11271.	3.3	22
42	A moist model monsoon. Nature, 2010, 463, 163-164.	27.8	21
43	On the Breakdown of ENSO's Relationship With Thermocline Depth in the Centralâ€Equatorial Pacific. Geophysical Research Letters, 2021, 48, e2020GL092335.	4.0	12
44	An Unconditionally Stable Scheme for the Shallow Water Equations*. Monthly Weather Review, 2000, 128, 810-823.	1.4	11
45	Pacific Decadal Variability in the View of Linear Equatorial Wave Theory*. Journal of Physical Oceanography, 2009, 39, 203-219.	1.7	11
46	Variable External Forcing Obscures the Weak Relationship between the NAO and North Atlantic Multidecadal SST Variability. Journal of Climate, 2019, 32, 3847-3864.	3.2	11
47	The Evolving Role of External Forcing in North Atlantic SST Variability over the Last Millennium. Journal of Climate, 2022, 35, 2741-2754.	3.2	10
48	Wetter Subtropics Lead to Reduced Pliocene Coastal Upwelling. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004243.	2.9	7
49	Warmer Pliocene Upwelling Site SST Leads to Wetter Subtropical Coastal Areas: A Positive Feedback on SST. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	6
50	A quantitative hydroclimatic context for the European Great Famine of 1315–1317. Communications Earth & Environment, 2020, 1, .	6.8	3
51	On the Allâ€India Rainfall Index and Subâ€India Rainfall Heterogeneity. Geophysical Research Letters, 2022, 49, .	4.0	1