
Marija Raguz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1950275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Giant Unilamellar Vesicle Electroformation for Phosphatidylcholine/Sphingomyelin/Cholesterol Ternary Mixtures. Membranes, 2022, 12, 525.	3.0	5
2	Multilamellar Liposomes as a Model for Biological Membranes: Saturation Recovery EPR Spin-Labeling Studies. Membranes, 2022, 12, 657.	3.0	2
3	Giant Unilamellar Vesicle Electroformation: What to Use, What to Avoid, and How to Quantify the Results. Membranes, 2021, 11, 860.	3.0	14
4	Three Premodern Concepts of Disease. Collegium Antropologicum, 2021, 45, 141-149.	0.2	1
5	Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation. Cell Biochemistry and Biophysics, 2020, 78, 157-164.	1.8	6
6	Health-Related Concepts and Cognitive Linguistics. Collegium Antropologicum, 2020, 44, 181-187.	0.2	0
7	Confocal Microscopy Confirmed that in Phosphatidylcholine Giant Unilamellar Vesicles with very High Cholesterol Content Pure Cholesterol Bilayer Domains Form. Cell Biochemistry and Biophysics, 2019, 77, 309-317.	1.8	11
8	Introduction to the Second Adriatic Symposium on Biophysical Approaches in Biomedical Studies. Cell Biochemistry and Biophysics, 2019, 77, 1-1.	1.8	1
9	Organization of lipids in fiber-cell plasma membranes of the eye lens. Experimental Eye Research, 2017, 156, 79-86.	2.6	25
10	High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochemistry and Biophysics, 2017, 75, 369-385.	1.8	204
11	Cholesterol Bilayer Domains in the Eye Lens Health: A Review. Cell Biochemistry and Biophysics, 2017, 75, 387-398.	1.8	29
12	Changes in the Properties and Organization of Human Lens Lipid Membranes Occurring with Age. Current Eye Research, 2017, 42, 721-731.	1.5	38
13	Cholesterol Bilayer Domain in Phospholipid Bilayer Membranes can be Detected by Confocal Microscope. Biophysical Journal, 2015, 108, 403a-404a.	0.5	2
14	Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: Methodology development and its application to studies of porcine lens membranes. Experimental Eye Research, 2015, 140, 179-186.	2.6	9
15	Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups. Experimental Eye Research, 2015, 132, 78-90.	2.6	26
16	Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61–70-year-old human donors. European Biophysics Journal, 2015, 44, 91-102.	2.2	39
17	Spin-label W-band EPR with Seven-Loop–Six-Gap Resonator: Application to Lens Membranes Derived from Eyes of a Single Donor. Applied Magnetic Resonance, 2014, 45, 1343-1358.	1.2	17
18	Lipid–protein interactions in plasma membranes of fiber cells isolated from the human eye lens. Experimental Eye Research, 2014, 120, 138-151.	2.6	22

Marija Raguz

#	Article	IF	CITATIONS
19	Properties of membranes derived from the total lipids extracted from the human lens cortex and nucleus. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1432-1440.	2.6	50
20	Formation of Cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Cholesterol/Dimyristoylphosphatidylcholine Membranes: EPR and DSC Studies. Journal of Physical Chemistry B, 2013, 117, 8994-9003.	2.6	52
21	Physicians' attitudes about interprofessional treatment of chronic pain: family physicians are considered the most important collaborators. Scandinavian Journal of Caring Sciences, 2013, 27, 303-310.	2.1	4
22	Properties of fiber cell plasma membranes isolated from the cortex and nucleus of the porcine eye lens. Experimental Eye Research, 2012, 97, 117-129.	2.6	32
23	Phase Boundaries in Phosphatidylcholine Membranes Saturated and Oversaturated with Cholesterol. Biophysical Journal, 2012, 102, 81a-82a.	0.5	0
24	Functions of Cholesterol and the Cholesterol Bilayer Domain Specific to the Fiber-Cell Plasma Membrane of the Eye Lens. Journal of Membrane Biology, 2012, 245, 51-68.	2.1	64
25	Phases and domains in sphingomyelin–cholesterol membranes: structure and properties using EPR spin-labeling methods. European Biophysics Journal, 2012, 41, 147-159.	2.2	36
26	Phase-Separation and Domain-Formation in Cholesterol-Sphingomyelin Mixture: Pulse-EPR Oxygen Probing. Biophysical Journal, 2011, 101, 837-846.	0.5	35
27	The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1072-1080.	2.6	58
28	Spin-label saturation-recovery EPR at W-band: Applications to eye lens lipid membranes. Journal of Magnetic Resonance, 2011, 212, 86-94.	2.1	22
29	Using spin-label electron paramagnetic resonance (EPR) to discriminate and characterize the cholesterol bilayer domain. Chemistry and Physics of Lipids, 2011, 164, 819-829.	3.2	60
30	Studying Lipid Organization in Biological Membranes Using Liposomes and EPR Spin Labeling. Methods in Molecular Biology, 2010, 606, 247-269.	0.9	50
31	Three-dimensional Dynamic Structure Of Phospholipid Bilayers Saturated With Cholesterol. Biophysical Journal, 2009, 96, 149a-150a.	0.5	0
32	Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2380-2388.	2.6	46
33	Characterization of lipid domains in reconstituted porcine lens membranes using EPR spin-labeling approaches. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1079-1090.	2.6	41
34	Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1454-1465.	2.6	50
35	Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2635-2645.	2.6	104
36	Resolved Fluorescence Emission Spectra of PRODAN in Ethanol/Buffer Solvents. Journal of Chemical Information and Modeling, 2005, 45, 1636-1640.	5.4	9