
James D Oliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1950182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Reviews, 2010, 34, 415-425.	3.9	941
2	The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in Microbiology, 2014, 5, 258.	1.5	681
3	<i>Vibrio vulnificus</i> : Disease and Pathogenesis. Infection and Immunity, 2009, 77, 1723-1733.	1.0	616
4	Vibrio spp. infections. Nature Reviews Disease Primers, 2018, 4, 1-19.	18.1	572
5	The viable but nonculturable state in bacteria. Journal of Microbiology, 2005, 43 Spec No, 93-100.	1.3	345
6	Wound infections caused by Vibrio vulnificus and other marine bacteria. Epidemiology and Infection, 2005, 133, 383-391.	1.0	296
7	Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends in Microbiology, 2015, 23, 7-13.	3.5	257
8	Distribution of <i>Vibrio vulnificus</i> and Other Lactose-Fermenting Vibrios in the Marine Environment. Applied and Environmental Microbiology, 1983, 45, 985-998.	1.4	252
9	Pathogenesis ofVibrio vulnificus. FEMS Microbiology Letters, 1999, 174, 207-214.	0.7	243
10	A Rapid and Simple PCR Analysis Indicates There Are Two Subgroups of <i>Vibrio vulnificus</i> Which Correlate with Clinical or Environmental Isolation. Microbiology and Immunology, 2005, 49, 381-389.	0.7	187
11	<i>Vibrio vulnificus</i> : new insights into a deadly opportunistic pathogen. Environmental Microbiology, 2018, 20, 423-430.	1.8	164
12	Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. Journal of Bacteriology, 2018, 200, .	1.0	164
13	The viable but non-culturable state in the human pathogenVibrio vulnificus. FEMS Microbiology Letters, 1995, 133, 203-208.	0.7	147
14	Ecology of Vibrio vulnificus in Estuarine Waters of Eastern North Carolina. Applied and Environmental Microbiology, 2003, 69, 3526-3531.	1.4	145
15	Resistance to environmental stresses by <i>Vibrio vulnificus</i> in the viable but nonculturable state. FEMS Microbiology Ecology, 2013, 84, 213-222.	1.3	136
16	Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiology Ecology, 2004, 50, 133-142.	1.3	132
17	The Biology of <i>Vibrio vulnificus</i> . Microbiology Spectrum, 2015, 3, .	1.2	132
18	Induction of Escherichia coli and Salmonella typhimurium into the viable but nonculturable state following chlorination of wastewater. Journal of Water and Health, 2005, 3, 249-257.	1.1	118

#	Article	IF	CITATIONS
19	Viable but Nonculturable and Persister Cells Coexist Stochastically and Are Induced by Human Serum. Infection and Immunity, 2015, 83, 4194-4203.	1.0	110
20	The Public Health Significance of Viable but Nonculturable Bacteria. , 2000, , 277-300.		110
21	In Situ and In Vitro Gene Expression by Vibrio vulnificus during Entry into, Persistence within, and Resuscitation from the Viable but Nonculturable State. Applied and Environmental Microbiology, 2006, 72, 1445-1451.	1.4	104
22	The viable but non-culturable state and its relevance in food safety. Current Opinion in Food Science, 2016, 8, 127-133.	4.1	101
23	Multi-site Analysis Reveals Widespread Antibiotic Resistance in the Marine Pathogen Vibrio vulnificus. Microbial Ecology, 2009, 57, 151-159.	1.4	100
24	The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina Estuaries. Journal of Microbiology, 2008, 46, 146-153.	1.3	99
25	Low temperature induced non-culturability and killing of <i>Vibrio vulnificus</i> . FEMS Microbiology Letters, 1992, 100, 205-210.	0.7	94
26	Essential Role for Estrogen in Protection against Vibrio vulnificus -Induced Endotoxic Shock. Infection and Immunity, 2001, 69, 6119-6122.	1.0	91
27	Emergence of a Virulent Clade of <i>Vibrio vulnificus</i> and Correlation with the Presence of a 33-Kilobase Genomic Island. Applied and Environmental Microbiology, 2007, 73, 5553-5565.	1.4	83
28	Population Structures of Two Genotypes of <i>Vibrio vulnificus</i> in Oysters (<i>Crassostrea) Tj ETQq0 0 0 rgE</i>	3T /Overloo 1.4	ck 10 Tf 50 38
29	Temperature effects on the viable but non-culturable state of Vibrio vulnificus. FEMS Microbiology Ecology, 1992, 10, 33-39.	1.3	76
30	Randomly Amplified Polymorphic DNA Analysis of Clinical and Environmental Isolates of <i>Vibrio vulnificus</i> and Other <i>Vibrio</i> Species. Applied and Environmental Microbiology, 1999, 65, 1141-1144.	1.4	76
31	Effect of weak acids on Listeria monocytogenes survival: Evidence for a viable but nonculturable state in response to low pH. Food Control, 2009, 20, 1141-1144.	2.8	75
32	Interspecific Quorum Sensing Mediates the Resuscitation of Viable but Nonculturable Vibrios. Applied and Environmental Microbiology, 2014, 80, 2478-2483.	1.4	73
33	Vibrio vulnificus. , 0, , 349-366.		66
34	Lipid Composition of a Psychrophilic Marine <i>Vibrio</i> sp. During Starvation-Induced Morphogenesis. Applied and Environmental Microbiology, 1984, 47, 461-466.	1.4	65
35	Pyrosequencing-Based Comparative Genome Analysis of Vibrio vulnificus Environmental Isolates. PLoS ONE, 2012, 7, e37553.	1.1	64
36	Virulence ofVibrio vulnificus: association with utilization of transferrin-bound iron, and lack of correlation with levels of cytotoxin or protease production. FEMS Microbiology Letters, 1987, 40, 55-59.	0.7	62

#	Article	IF	CITATIONS
37	Phylogenetic Analysis of the Incidence of <i>lux</i> Gene Horizontal Transfer in <i>Vibrionaceae</i> . Journal of Bacteriology, 2008, 190, 3494-3504.	1.0	59
38	Vibrio vulnificus: Death on the Half Shell. A Personal Journey with the Pathogen and its Ecology. Microbial Ecology, 2013, 65, 793-799.	1.4	59
39	Analysis of Vibrio vulnificus from Market Oysters and Septicemia Cases for Virulence Markers. Applied and Environmental Microbiology, 2003, 69, 4006-4011.	1.4	58
40	Evaluation of Genotypic and Phenotypic Methods To Distinguish Clinical from Environmental <i>Vibrio vulnificus</i> Strains. Applied and Environmental Microbiology, 2009, 75, 1604-1613.	1.4	58
41	The Interactions of Vibrio vulnificus and the Oyster Crassostrea virginica. Microbial Ecology, 2013, 65, 807-816.	1.4	58
42	Multiplex PCR Assay for Detection and Simultaneous Differentiation of Genotypes of <i>Vibrio vulnificus</i> Biotype 1. Foodborne Pathogens and Disease, 2008, 5, 691-693.	0.8	54
43	Capsular Polysaccharide Phase Variation in Vibrio vulnificus. Applied and Environmental Microbiology, 2006, 72, 6986-6993.	1.4	53
44	DETECTION OF THE VIABLE BUT NONCULTURABLE STATE IN ESCHERICHIA COLI O157:H7. Journal of Food Safety, 1997, 16, 255-262.	1.1	52
45	Integration of Vibrio vulnificus into Marine Aggregates and Its Subsequent Uptake by Crassostrea virginica Oysters. Applied and Environmental Microbiology, 2013, 79, 1454-1458.	1.4	52
46	Apparent Loss of Vibrio vulnificus from North Carolina Oysters Coincides with a Drought-Induced Increase in Salinity. Applied and Environmental Microbiology, 2012, 78, 3885-3889.	1.4	50
47	Phylogeny of Vibrio vulnificus from the Analysis of the Core-Genome: Implications for Intra-Species Taxonomy. Frontiers in Microbiology, 2017, 8, 2613.	1.5	50
48	Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state. Journal of Microbiology, 2004, 42, 69-73.	1.3	50
49	Role of Iron in Human Serum Resistance of the Clinical and Environmental <i>Vibrio vulnificus</i> Genotypes. Applied and Environmental Microbiology, 2007, 73, 7501-7505.	1.4	49
50	Transcriptome Sequencing Reveals the Virulence and Environmental Genetic Programs of Vibrio vulnificus Exposed to Host and Estuarine Conditions. PLoS ONE, 2014, 9, e114376.	1.1	48
51	Induction of Carbon Starvation-Induced Proteins in <i>Vibrio vulnificus</i> . Applied and Environmental Microbiology, 1994, 60, 3653-3659.	1.4	46
52	Ability ofVibrio vulnificus to obtain iron from transferrin and other iron-binding proteins. Current Microbiology, 1987, 15, 155-157.	1.0	44
53	Randomly Amplified Polymorphic DNA Analysis of Starved and Viable but Nonculturable <i>Vibrio vulnificus</i> Cells. Applied and Environmental Microbiology, 1998, 64, 3025-3028.	1.4	42
54	<i>Vibrio vulnificus</i> genome suggests two distinct ecotypes. Environmental Microbiology Reports, 2010, 2, 128-132.	1.0	41

#	Article	IF	CITATIONS
55	RpoS involvement and requirement for exogenous nutrient for osmotically induced cross protection in Vibrio vulnificus. FEMS Microbiology Ecology, 2005, 53, 455-462.	1.3	35
56	Cellular, physiological, and molecular adaptive responses of <i>Erwinia amylovora</i> to starvation. FEMS Microbiology Ecology, 2014, 88, 258-271.	1.3	33
57	Vibrio vulnificus. , 2005, , 253-276.		31
58	Refined Medium for Direct Isolation of Vibrio vulnificus from Oyster Tissue and Seawater. Applied and Environmental Microbiology, 2007, 73, 3098-3100.	1.4	30
59	Survival of spinach-associated Helicobacter pylori in the viable but nonculturable state. Food Control, 2010, 21, 1150-1154.	2.8	30
60	Rapid <i>in situ</i> detection of virulent <i>Vibrio vulnificus</i> strains in raw oyster matrices using realâ€ŧime PCR. Environmental Microbiology Reports, 2010, 2, 76-80.	1.0	28
61	Serum Survival of Vibrio vulnificus: Role of Genotype, Capsule, Complement, Clinical Origin, and in Situ Incubation. Pathogens, 2014, 3, 822-832.	1.2	28
62	The viable but nonculturable state of Kanagawa positive and negative strains of Vibrio parahaemolyticus. Journal of Microbiology, 2004, 42, 74-9.	1.3	28
63	Role of Anaerobiosis in Capsule Production and Biofilm Formation in Vibrio vulnificus. Infection and Immunity, 2015, 83, 551-559.	1.0	27
64	Interaction of Vibrio vulnificus and the Eastern Oyster, Crassostrea virginica. Journal of Food Protection, 1994, 57, 224-228.	0.8	26
65	pilF polymorphism-based real-time PCR to distinguish Vibrio vulnificus strains of human health relevance. Food Microbiology, 2012, 30, 17-23.	2.1	26
66	Different abundance and correlational patterns exist between total and presumed pathogenic Vibrio vulnificus and V. parahaemolyticus in shellfish and waters along the North Carolina coast. FEMS Microbiology Ecology, 2017, 93, .	1.3	26
67	<i>csrA</i> Inhibits the Formation of Biofilms by <i>Vibrio vulnificus</i> . Applied and Environmental Microbiology, 2008, 74, 7064-7066.	1.4	24
68	Vibrio vulnificus. Trends in Microbiology, 2020, 28, 81-82.	3.5	24
69	Starvation-Induced Thermal Tolerance as a Survival Mechanism in a Psychrophilic Marine Bacterium. Applied and Environmental Microbiology, 1993, 59, 2653-2656.	1.4	23
70	Survival of and In Situ Gene Expression by <i>Vibrio vulnificus</i> at Varying Salinities in Estuarine Environments. Applied and Environmental Microbiology, 2008, 74, 182-187.	1.4	22
71	Implications of Chitin Attachment for the Environmental Persistence and Clinical Nature of the Human Pathogen Vibrio vulnificus. Applied and Environmental Microbiology, 2014, 80, 1580-1587.	1.4	21
72	A new culture-based method for the improved identification of Vibrio vulnificus from environmental samples, reducing the need for molecular confirmation. Journal of Microbiological Methods, 2013, 93, 277-283.	0.7	20

#	Article	IF	CITATIONS
73	Potential impacts of hypoxia and a warming ocean on oyster microbiomes. Marine Environmental Research, 2018, 139, 27-34.	1.1	19
74	In Situ Gene Expression by Vibrio vulnificus. Applied and Environmental Microbiology, 2006, 72, 2244-2246.	1.4	18
75	Increases in the Amounts of Vibrio spp. in Oysters upon Addition of Exogenous Bacteria. Applied and Environmental Microbiology, 2013, 79, 5208-5213.	1.4	18
76	Uptake and depuration of the C―and Eâ€genotypes of <i>Vibrio vulnificus</i> by the Eastern Oyster (<i>Crassostrea virginica</i>). Environmental Microbiology Reports, 2010, 2, 112-115.	1.0	17
77	Molecular and Physical Factors That Influence Attachment of Vibrio vulnificus to Chitin. Applied and Environmental Microbiology, 2015, 81, 6158-6165.	1.4	17
78	<i>Vibrio</i> Species. , 0, , 401-439.		17
79	Reversal of hypotension induced by Vibrio vulnificus lipopolysaccharide in the rat by inhibition of nitric oxide synthase. Microbial Pathogenesis, 1992, 13, 391-397.	1.3	16
80	Effects of GRAS Compounds on Natural Vibrio vulnificus Populations in Oysters. Journal of Food Protection, 1994, 57, 921-923.	0.8	16
81	Hot Sauce: No Elimination of Vibrio vulnificus in Oysters. Journal of Food Protection, 1995, 58, 441-442.	0.8	16
82	Effects of temperature on detection of plasmid or chromosomally encodedgfp- andlux-labeledPseudomonas fluorescensin soil. Environmental Biosafety Research, 2004, 3, 83-90.	1.1	15
83	Value of Cellobiose–Polymyxin B–Colistin Agar for Isolation of Vibrio vulnificus from Oysters. Journal of Food Protection, 1995, 58, 439-440.	0.8	15
84	Evidence for an Intermediate Colony Morphology of Vibrio vulnificus. Applied and Environmental Microbiology, 2006, 72, 4356-4359.	1.4	14
85	Impact of analytic provenance in genome analysis. BMC Genomics, 2014, 15, S1.	1.2	13
86	Survival of <i>Vibrio vulnificus</i> Genotypes in Male and Female Serum, and Production of Siderophores in Human Serum and Seawater. Foodborne Pathogens and Disease, 2014, 11, 119-125.	0.8	13
87	Adaptation of Vibrio vulnificus and an rpoS mutant to bile salts. International Journal of Food Microbiology, 2010, 140, 232-238.	2.1	12
88	Rapidly developing and fatal Vibrio vulnificus wound infection. IDCases, 2016, 6, 13.	0.4	12
89	The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiology Letters, 1995, 133, 203-208.	0.7	11
90	Clinical and environmental genotypes ofVibrio vulnificusdisplay distinct, quorum-sensing-mediated, chitin detachment dynamics. Pathogens and Disease, 2015, 73, ftv072.	0.8	10

#	Article	IF	CITATIONS
91	Pathogenesis of Vibrio vulnificus. FEMS Microbiology Letters, 1999, 174, 207-214.	0.7	9
92	Vibrio parahaemolyticus and Vibrio vulnificus. , 2015, , 1169-1186.		8
93	Impact of hypoxia on gene expression patterns by the human pathogen, Vibrio vulnificus , and bacterial community composition in a North Carolina estuary. GeoHealth, 2017, 1, 37-50.	1.9	7
94	ExperimentalVibrio choleraewound infections. FEMS Microbiology Letters, 1987, 40, 89-93.	0.7	6
95	Phylogeography of the marine pathogen, <i>Vibrio vulnificus</i> , revealed the ancestral scenarios of its evolution. MicrobiologyOpen, 2020, 9, e1103.	1.2	5
96	The effects of hydrostatic pressure on bacterial attachment. Biofouling, 1991, 3, 305-310.	0.8	4
97	Effect of temperature and plasmid carriage on nonculturability in organisms targeted for release. FEMS Microbiology Ecology, 1995, 17, 229-237.	1.3	1
98	Substrate Degradation and Pressure Tolerance of Free-Living and Attached Bacterial Populations in the Intestines of Shallow-Water Fish. Applied and Environmental Microbiology, 1984, 48, 1243-1245.	1.4	0
99	Use of <i>Bacillus subtilis</i> var. <i>aterrimus</i> in a New Method of Tagging. Journal of Forensic Sciences, 1985, 30, 531-534.	0.9	0