List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/194923/publications.pdf Version: 2024-02-01

MARY R COLDRINC

#	Article	IF	CITATIONS
1	Osteoarthritis: A disease of the joint as an organ. Arthritis and Rheumatism, 2012, 64, 1697-1707.	6.7	2,055
2	Inflammation in osteoarthritis. Current Opinion in Rheumatology, 2011, 23, 471-478.	4.3	1,092
3	Osteoarthritis. Journal of Cellular Physiology, 2007, 213, 626-634.	4.1	1,069
4	Osteoarthritis. Nature Reviews Disease Primers, 2016, 2, 16072.	30.5	1,011
5	The control of chondrogenesis. Journal of Cellular Biochemistry, 2006, 97, 33-44.	2.6	932
6	Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Annals of the New York Academy of Sciences, 2010, 1192, 230-237.	3.8	655
7	The role of the chondrocyte in osteoarthritis. Arthritis and Rheumatism, 2000, 43, 1916-1926.	6.7	638
8	Cartilage homeostasis in health and rheumatic diseases. Arthritis Research and Therapy, 2009, 11, 224.	3.5	588
9	Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk. Nature Reviews Rheumatology, 2016, 12, 632-644.	8.0	581
10	The Role of Cytokines in Cartilage Matrix Degeneration in Osteoarthritis. Clinical Orthopaedics and Related Research, 2004, 427, S27-S36.	1.5	535
11	NF-κB Signaling: Multiple Angles to Target OA. Current Drug Targets, 2010, 11, 599-613.	2.1	478
12	Osteoarthritis and cartilage: The role of cytokines. Current Rheumatology Reports, 2000, 2, 459-465.	4.7	394
13	Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. , 2011, 21, 202-220.		386
14	Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Therapeutic Advances in Musculoskeletal Disease, 2012, 4, 269-285.	2.7	340
15	Homeostatic Mechanisms in Articular Cartilage and Role of Inflammation in Osteoarthritis. Current Rheumatology Reports, 2013, 15, 375.	4.7	259
16	The Role of Cytokines as Inflammatory Mediators in Osteoarthritis: Lessons from Animal Models. Connective Tissue Research, 1999, 40, 1-11.	2.3	256
17	Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Practice and Research in Clinical Rheumatology, 2006, 20, 1003-1025.	3.3	245
18	The Regulation of Chondrocyte Function by Proinflammatory Mediators. Clinical Orthopaedics and Related Research, 2004, 427, S37-S46.	1.5	222

#	Article	IF	CITATIONS
19	IKKα, IKKβ, and NEMO/IKKγ Are Each Required for the NF-κB-mediated Inflammatory Response Program. Journal of Biological Chemistry, 2002, 277, 45129-45140.	3.4	208
20	Activation of the Discoidin Domain Receptor 2 Induces Expression of Matrix Metalloproteinase 13 Associated with Osteoarthritis in Mice*♦. Journal of Biological Chemistry, 2005, 280, 548-555.	3.4	167
21	Transcriptional suppression by interleukin-1 and interferon-Î ³ of type II collagen gene expression in human chondrocytes. Journal of Cellular Biochemistry, 1994, 54, 85-99.	2.6	164
22	Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. Journal of Pathology, 2004, 202, 367-374.	4.5	164
23	NF-κB-mediated repression of growth arrest- and DNA-damage-inducible proteins 45α and γ is essential for cancer cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13618-13623.	7.1	151
24	Novel NEMO/lκB Kinase and NF-κB Target Genes at the Pre-B to Immature B Cell Transition. Journal of Biological Chemistry, 2001, 276, 18579-18590.	3.4	146
25	DNA demethylation at specific CpG sites in the <i>IL1B</i> promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis and Rheumatism, 2009, 60, 3303-3313.	6.7	146
26	Emerging targets in osteoarthritis therapy. Current Opinion in Pharmacology, 2015, 22, 51-63.	3.5	142
27	Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends in Molecular Medicine, 2012, 18, 109-118.	6.7	141
28	In Vivo Cyclic Compression Causes Cartilage Degeneration and Subchondral Bone Changes in Mouse Tibiae. Arthritis and Rheumatism, 2013, 65, 1569-1578.	6.7	140
29	Regulated Transcription of Human Matrix Metalloproteinase 13 (MMP13) and Interleukin-1β (IL1B) Genes in Chondrocytes Depends on Methylation of Specific Proximal Promoter CpG Sites. Journal of Biological Chemistry, 2013, 288, 10061-10072.	3.4	133
30	Eating bone or adding it: the Wnt pathway decides. Nature Medicine, 2007, 13, 133-134.	30.7	128
31	Proteomic Analysis of Synovial Fluid From the Osteoarthritic Knee: Comparison With Transcriptome Analyses of Joint Tissues. Arthritis and Rheumatism, 2013, 65, 981-992.	6.7	126
32	Anticytokine therapy for osteoarthritis. Expert Opinion on Biological Therapy, 2001, 1, 817-829.	3.1	118
33	Egr-1 Mediates Transcriptional Repression of COL2A1Promoter Activity by Interleukin-1β. Journal of Biological Chemistry, 2003, 278, 17688-17700.	3.4	117
34	Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-11². Arthritis and Rheumatism, 2000, 43, 2189-2201.	6.7	114
35	Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthritis and Rheumatism, 2007, 56, 2663-2673.	6.7	114
36	Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Annals of the New York Academy of Sciences, 2019, 1442, 17-34.	3.8	113

#	Article	IF	CITATIONS
37	CITED2-mediated Regulation of MMP-1 and MMP-13 in Human Chondrocytes under Flow Shear. Journal of Biological Chemistry, 2003, 278, 47275-47280.	3.4	112
38	Cells of the synovium in rheumatoid arthritis. Chondrocytes. Arthritis Research and Therapy, 2007, 9, 220.	3.5	108
39	A misplaced IncRNA causes brachydactyly in humans. Journal of Clinical Investigation, 2012, 122, 3990-4002.	8.2	108
40	Articular Cartilage Degradation in Osteoarthritis. HSS Journal, 2012, 8, 7-9.	1.7	107
41	Pulsed Electromagnetic Fields Increased the Anti-Inflammatory Effect of A2A and A3 Adenosine Receptors in Human T/C-28a2 Chondrocytes and hFOB 1.19 Osteoblasts. PLoS ONE, 2013, 8, e65561.	2.5	106
42	Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation. RMD Open, 2015, 1, e000061.	3.8	103
43	The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes – Implications for osteoarthritis. Biochemical and Biophysical Research Communications, 2011, 405, 362-367.	2.1	102
44	Early knee osteoarthritis: FigureÂ1. RMD Open, 2015, 1, e000062.	3.8	100
45	Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor ? in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor ?B-mediated induction of the Ets transcription factor ESE-1. Arthritis and Rheumatism, 2003, 48, 1249-1260.	6.7	99
46	A Novel Role for GADD45β as a Mediator of MMP-13 Gene Expression during Chondrocyte Terminal Differentiation. Journal of Biological Chemistry, 2005, 280, 38544-38555.	3.4	93
47	Differential expression of CADD45β in normal and osteoarthritic cartilage: Potential role in homeostasis of articular chondrocytes. Arthritis and Rheumatism, 2008, 58, 2075-2087.	6.7	91
48	Inhibitor of NF-κB Kinases α and β Are Both Essential for High Mobility Group Box 1-Mediated Chemotaxis. Journal of Immunology, 2010, 184, 4497-4509.	0.8	90
49	The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene, 1999, 18, 3303-3308.	5.9	89
50	Loss of methylation in CpG sites in the NFâ€̂PB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis and Rheumatism, 2013, 65, 732-742.	6.7	84
51	Chondrogenesis, joint formation, and articular cartilage regeneration. Journal of Cellular Biochemistry, 2009, 107, 383-392.	2.6	83
52	WISP3-dependent regulation of type II collagen and aggrecan production in chondrocytes. Arthritis and Rheumatism, 2004, 50, 488-497.	6.7	77
53	Chemokines in Cartilage Degradation. Clinical Orthopaedics and Related Research, 2004, 427, S53-S61.	1.5	76
54	Physiological loading of joints prevents cartilage degradation through CITED2. FASEB Journal, 2011, 25, 182-191.	0.5	74

#	Article	IF	CITATIONS
55	Molecular cloning of rat human type IX collagen cDNA and localization of the alpha1(IX) gene on the human chromosome 6. FEBS Journal, 1989, 179, 71-78.	0.2	73
56	E74-like Factor 3 (ELF3) Impacts on Matrix Metalloproteinase 13 (MMP13) Transcriptional Control in Articular Chondrocytes under Proinflammatory Stress. Journal of Biological Chemistry, 2012, 287, 3559-3572.	3.4	73
57	Differential requirements for IKKÎ \pm and IKKÎ 2 in the differentiation of primary human osteoarthritic chondrocytes. Arthritis and Rheumatism, 2008, 58, 227-239.	6.7	71
58	Association of Reduced Type IX Collagen Gene Expression in Human Osteoarthritic Chondrocytes With Epigenetic Silencing by DNA Hypermethylation. Arthritis and Rheumatology, 2014, 66, 3040-3051.	5.6	71
59	Parathyroid hormone-related protein is abundant in osteoarthritic cartilage, and the parathyroid hormone-related protein 1-173 isoform is selectively induced by transforming growth factor ? in articular chondrocytes and suppresses generation of extracellular inorganic pyrophosphate. Arthritis and Rheumatism 1998 41 2152-2164	6.7	69
60	Proteoglycan Production by Immortalized Human Chondrocyte Cell Lines Cultured under Conditions That Promote Expression of the Differentiated Phenotype. Archives of Biochemistry and Biophysics, 2000, 383, 79-90.	3.0	69
61	Green tea polyphenol treatment is chondroprotective, anti-inflammatory and palliative in a mouse posttraumatic osteoarthritis model. Arthritis Research and Therapy, 2014, 16, 508.	3.5	69
62	Human βâ€defensin 3 mediates tissue remodeling processes in articular cartilage by increasing levels of metalloproteinases and reducing levels of their endogenous inhibitors. Arthritis and Rheumatism, 2005, 52, 1736-1745.	6.7	68
63	A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to Brachydactyly Type E. Human Molecular Genetics, 2010, 19, 848-860.	2.9	67
64	Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. Journal of Ethnopharmacology, 2011, 138, 364-372.	4.1	66
65	Identification of α ₂ â€Macroglobulin as a Master Inhibitor of Cartilageâ€Degrading Factors That Attenuates the Progression of Posttraumatic Osteoarthritis. Arthritis and Rheumatology, 2014, 66, 1843-1853.	5.6	66
66	The Ets transcription factor ESE-1 mediates induction of the COX-2 gene by LPS in monocytes. FEBS Journal, 2005, 272, 1676-1687.	4.7	64
67	Strain-induced mechanotransduction through primary cilia, extracellular ATP, purinergic calcium signaling, and ERK1/2 transactivates CITED2 and downregulates MMP-1 and MMP-13 gene expression in chondrocytes. Osteoarthritis and Cartilage, 2016, 24, 892-901.	1.3	63
68	Suppressors of cytokine signalling (SOCS) are reduced in osteoarthritis. Biochemical and Biophysical Research Communications, 2011, 407, 54-59.	2.1	61
69	Mouse Models of Osteoarthritis: Surgical Model of Posttraumatic Osteoarthritis Induced by Destabilization of the Medial Meniscus. Methods in Molecular Biology, 2015, 1226, 143-173.	0.9	59
70	REGULATION OF COLLAGEN GENE EXPRESSION BY PROSTAGLANDINS AND INTERLEUKIN- $1\hat{1}^2$ IN CULTURED CHONDROCYTES AND FIBROBLASTS. American Journal of Therapeutics, 1996, 3, 9-16.	0.9	57
71	Inhibitors of Mitogen-Activated Protein Kinases Downregulate COX-2 Expression in Human Chondrocytes. Mediators of Inflammation, 2005, 2005, 249-255.	3.0	57
72	The TATA-containing core promoter of the type II collagen gene (COL2A1) is the target of interferon-gamma-mediated inhibition in human chondrocytes: requirement for Stat1alpha, Jak1 and Jak2. Biochemical Journal, 2003, 369, 103-115.	3.7	56

#	Article	IF	CITATIONS
73	Association of joint space narrowing with impairment of physical function and work ability in patients with early rheumatoid arthritis: protection beyond disease control by adalimumab plus methotrexate. Annals of the Rheumatic Diseases, 2013, 72, 1156-1162.	0.9	56
74	ESE-1 Is a Novel Transcriptional Mediator of Angiopoietin-1 Expression in the Setting of Inflammation. Journal of Biological Chemistry, 2004, 279, 12794-12803.	3.4	55
75	Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocytes. Biochemical Pharmacology, 2010, 79, 722-732.	4.4	55
76	ESEâ€1 is a potent repressor of type II collagen gene (<i>COL2A1</i>) transcription in human chondrocytes. Journal of Cellular Physiology, 2008, 215, 562-573.	4.1	54
77	Selection of reliable reference genes for qPCR studies on chondroprotective action. BMC Molecular Biology, 2007, 8, 13.	3.0	53
78	Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation. Methods in Molecular Biology, 2012, 806, 301-336.	0.9	52
79	Inflammatory molecules produced by meniscus and synovium in early and endâ€stage osteoarthritis: a coculture study. Journal of Cellular Physiology, 2019, 234, 11176-11187.	4.1	51
80	DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Scientific Reports, 2017, 7, 7771.	3.3	50
81	Matrix metalloproteinase 13 loss associated with impaired extracellular matrix remodeling disrupts chondrocyte differentiation by concerted effects on multiple regulatory factors. Arthritis and Rheumatism, 2010, 62, 2370-2381.	6.7	49
82	ADAM17 Controls Endochondral Ossification by Regulating Terminal Differentiation of Chondrocytes. Molecular and Cellular Biology, 2013, 33, 3077-3090.	2.3	47
83	Intact Pericellular Matrix of Articular Cartilage Is Required for Unactivated Discoidin Domain Receptor 2 in the Mouse Model. American Journal of Pathology, 2011, 179, 1338-1346.	3.8	46
84	CADD45β Enhances Col10a1 Transcription via the MTK1/MKK3/6/p38 Axis and Activation of C/EBPβ-TAD4 in Terminally Differentiating Chondrocytes. Journal of Biological Chemistry, 2010, 285, 8395-8407.	3.4	45
85	A hyaluronic acid–salmon calcitonin conjugate for the local treatment of osteoarthritis: Chondro-protective effect in a rabbit model of early OA. Journal of Controlled Release, 2014, 187, 30-38.	9.9	44
86	Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis. Osteoarthritis and Cartilage, 2016, 24, 1021-1028.	1.3	44
87	Oxidative stress and status of antioxidant enzymes in children withÂKashin–Beck disease. Osteoarthritis and Cartilage, 2013, 21, 1781-1789.	1.3	43
88	Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice. Osteoarthritis and Cartilage, 2017, 25, 2108-2118.	1.3	43
89	Production of endogenous antibiotics in articular cartilage. Arthritis and Rheumatism, 2004, 50, 3526-3534.	6.7	42
90	Cellular responses to T-2 toxin and/or deoxynivalenol that induce cartilage damage are not specific to chondrocytes. Scientific Reports, 2017, 7, 2231.	3.3	42

#	Article	IF	CITATIONS
91	Cytokines and Skeletal Physiology. Clinical Orthopaedics and Related Research, 1996, 324, 13-23.	1.5	41
92	Bone and cartilage in osteoarthritis: is what's best for one good or bad for the other?. Arthritis Research and Therapy, 2010, 12, 143.	3.5	40
93	Trefoil factor 3 is induced during degenerative and inflammatory joint disease, activates matrix metalloproteinases, and enhances apoptosis of articular cartilage chondrocytes. Arthritis and Rheumatism, 2010, 62, 815-825.	6.7	39
94	IKKα/CHUK Regulates Extracellular Matrix Remodeling Independent of Its Kinase Activity to Facilitate Articular Chondrocyte Differentiation. PLoS ONE, 2013, 8, e73024.	2.5	39
95	Caesalpinia sappan extract inhibits IL1β-mediated overexpression of matrix metalloproteinases in human chondrocytes. Genes and Nutrition, 2012, 7, 307-318.	2.5	38
96	Mechanical Forces Induce Changes in VEGF and VEGFR-1/sFlt-1 Expression in Human Chondrocytes. International Journal of Molecular Sciences, 2014, 15, 15456-15474.	4.1	38
97	Matrilin-3 Induction of IL-1 receptor antagonist Is required for up-regulating collagen II and aggrecan and down-regulating ADAMTS-5 gene expression. Arthritis Research and Therapy, 2012, 14, R197.	3.5	37
98	C-28/I2 and T/C-28a2 chondrocytes as well as human primary articular chondrocytes express sex hormone and insulin receptors—Useful cells in study of cartilage metabolism. Annals of Anatomy, 2011, 193, 23-29.	1.9	36
99	Activation and regulation of the lκB kinase in human B cells by CD40 signaling. European Journal of Immunology, 1999, 29, 1353-1362.	2.9	34
100	Immortalization of Human Articular Chondrocytes for Generation of Stable, Differentiated Cell Lines. , 2004, 100, 023-036.		34
101	Progressive cellâ€mediated changes in articular cartilage and bone in mice are initiated by a single session of controlled cyclic compressive loading. Journal of Orthopaedic Research, 2016, 34, 1941-1949.	2.3	34
102	Culture of Immortalized Chondrocytes and Their Use As Models of Chondrocyte Function. , 2004, 100, 037-052.		33
103	Laminins and Nidogens in the Pericellular Matrix of Chondrocytes. American Journal of Pathology, 2016, 186, 410-418.	3.8	32
104	Dual regulation of metalloproteinase expression in chondrocytes by Wntâ€1–inducible signaling pathway protein 3/CCN6. Arthritis and Rheumatism, 2012, 64, 2289-2299.	6.7	30
105	ELF3 modulates type II collagen gene (<i>COL2A1</i>) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity. Connective Tissue Research, 2017, 58, 15-26.	2.3	30
106	E74â€like factor 3 and nuclear factorâ€₽̂B regulate lipocalinâ€2 expression in chondrocytes. Journal of Physiology, 2016, 594, 6133-6146.	2.9	29
107	The proinflammatory cytokines interleukin-1α and tumor necrosis factor α promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biological Chemistry, 2013, 394, 307-316.	2.5	28
108	Anabolic role of lysyl oxidase like-2 in cartilage of knee and temporomandibular joints with osteoarthritis. Arthritis Research and Therapy, 2017, 19, 179.	3.5	28

#	Article	IF	CITATIONS
109	Morphological and ultrastructural analysis of normal, injured and osteoarthritic human knee menisci. European Journal of Histochemistry, 2019, 63, .	1.5	28
110	Perlecan is required for the chondrogenic differentiation of synovial mesenchymal cells through regulation of Sox9 gene expression. Journal of Orthopaedic Research, 2017, 35, 837-846.	2.3	27
111	Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation. , 2005, 107, 069-096.		26
112	Gene Expression Profiling in Conjunction with Physiological Rescues of IKKα-null Cells with Wild Type or Mutant IKKα Reveals Distinct Classes of IKKα/NF-κB-dependent Genes. Journal of Biological Chemistry, 2005, 280, 14057-14069.	3.4	26
113	Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation. , 1996, 2, 217-232.		25
114	Thermoresponsive polymeric dexamethasone prodrug for arthritis pain. Journal of Controlled Release, 2021, 339, 484-497.	9.9	22
115	Cell migration to CXCL12 requires simultaneous IKKα and IKKβ-dependent NF-κB signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1796-1804.	4.1	21
116	Functional Isoforms of lκB Kinase α (IKKα) Lacking Leucine Zipper and Helix-Loop-Helix Domains Reveal that IKKα and IKKβ Have Different Activation Requirements. Molecular and Cellular Biology, 2000, 20, 2635-2649.	2.3	20
117	Collagen XI mutation lowers susceptibility to loadâ€induced cartilage damage in mice. Journal of Orthopaedic Research, 2018, 36, 711-720.	2.3	20
118	Are bone morphogenetic proteins effective inducers of cartilage repair? Ex vivo transduction of muscle-derived stem cells. Arthritis and Rheumatism, 2006, 54, 387-389.	6.7	19
119	Elf3 Contributes to Cartilage Degradation in vivo in a Surgical Model of Post-Traumatic Osteoarthritis. Scientific Reports, 2018, 8, 6438.	3.3	19
120	Phlpp inhibitors block pain and cartilage degradation associated with osteoarthritis. Journal of Orthopaedic Research, 2018, 36, 1487-1497.	2.3	19
121	CITED2 mediates the crossâ€ŧalk between mechanical loading and ILâ€4 to promote chondroprotection. Annals of the New York Academy of Sciences, 2019, 1442, 128-137.	3.8	19
122	Acute inflammation with induction of anaphylatoxin C5a and terminal complement complex C5b-9 associated with multiple intra-articular injections of hylan G-F 20: a case report. Osteoarthritis and Cartilage, 2012, 20, 791-795.	1.3	16
123	Biochemical evidence for gap junctions and Cx43 expression in immortalized human chondrocyte cell line: a potential model in the study of cell communication in human chondrocytes. Osteoarthritis and Cartilage, 2014, 22, 586-590.	1.3	16
124	Labral calcification plays a key role in hip pain and symptoms in femoroacetabular impingement. Journal of Orthopaedic Surgery and Research, 2020, 15, 86.	2.3	16
125	E74-Like Factor (ELF3) and Leptin, a Novel Loop Between Obesity and Inflammation Perpetuating a Pro-Catabolic State in Cartilage. Cellular Physiology and Biochemistry, 2018, 45, 2401-2410.	1.6	15
126	Inducible knockout of CHUK/IKKα in adult chondrocytes reduces progression of cartilage degradation in a surgical model of osteoarthritis. Scientific Reports, 2019, 9, 8905.	3.3	15

#	Article	IF	CITATIONS
127	Kinematics of meniscal―and ACLâ€ŧransected mouse knees during controlled tibial compressive loading captured using roentgen stereophotogrammetry. Journal of Orthopaedic Research, 2017, 35, 353-360.	2.3	14
128	Mitochondrial DNA haplogroups and ageing mechanisms in osteoarthritis. Annals of the Rheumatic Diseases, 2017, 76, 939-941.	0.9	13
129	Selenium promotes metabolic conversion of T-2 toxin to HT-2 toxin in cultured human chondrocytes. Journal of Trace Elements in Medicine and Biology, 2017, 44, 218-224.	3.0	13
130	Lysyl Oxidase-Like 2 Protects against Progressive and Aging Related Knee Joint Osteoarthritis in Mice. International Journal of Molecular Sciences, 2019, 20, 4798.	4.1	12
131	Bystander effectors of chondrosarcoma cells irradiated at different LET impair proliferation of chondrocytes. Journal of Cell Communication and Signaling, 2019, 13, 343-356.	3.4	12
132	Is arthroscopic videotape a reliable tool for describing early joint tissue pathology of the knee?. Knee, 2017, 24, 1374-1382.	1.6	11
133	Insight into the function of DIO2, a susceptibility gene in human osteoarthritis, as an inducer of cartilage damage in a rat model: is there a role for chondrocyte hypertrophy?. Osteoarthritis and Cartilage, 2013, 21, 643-645.	1.3	10
134	Lack of ADAM10 in endothelial cells affects osteoclasts at the chondroâ€osseus junction. Journal of Orthopaedic Research, 2014, 32, 224-230.	2.3	10
135	Mouse Models of Osteoarthritis: Surgical Model of Post-traumatic Osteoarthritis Induced by Destabilization of the Medial Meniscus. Methods in Molecular Biology, 2021, 2221, 223-260.	0.9	10
136	Biology of the Normal Joint. , 2013, , 1-19.e6.		9
137	Role of cytokines and chemokines in cartilage and bone destruction in arthritis. Current Opinion in Orthopaedics, 2002, 13, 351-362.	0.3	8
138	LOXL2 promotes aggrecan and gender-specific anabolic differences to TMJ cartilage. Scientific Reports, 2020, 10, 20179.	3.3	8
139	Do Synovial Inflammation and Meniscal Degeneration Impact Clinical Outcomes of Patients Undergoing Arthroscopic Partial Meniscectomy? A Histological Study. International Journal of Molecular Sciences, 2022, 23, 3903.	4.1	8
140	The link between structural damage and pain in a genetic model of osteoarthritis and intervertebral disc degeneration: A joint misadventure. Arthritis and Rheumatism, 2009, 60, 2550-2552.	6.7	7
141	Individual and combined toxicity of Tâ€2 toxin and deoxynivalenol on human Câ€28/I2 and rat primary chondrocytes. Journal of Applied Toxicology, 2019, 39, 343-353.	2.8	7
142	LOXL2 as a protective in osteoarthritis cartilage. Aging, 2017, 9, 2024-2025.	3.1	7
143	Cartilage and Chondrocytes. , 2013, , 33-60.e10.		6
144	CHUK/IKK-α loss in lung epithelial cells enhances NSCLC growth associated with HIF up-regulation. Life Science Alliance, 2019, 2, e201900460.	2.8	6

#	Article	IF	CITATIONS
145	Transcriptomic and epigenomic analyses uncovered Lrrc15 as a contributing factor to cartilage damage in osteoarthritis. Scientific Reports, 2021, 11, 21107.	3.3	6
146	IKKα-Mediated Noncanonical NF-κB Signaling Is Required To Support Murine Gammaherpesvirus 68 Latency <i>In Vivo</i> . Journal of Virology, 2022, 96, e0002722.	3.4	6
147	Biology of the Normal Joint. , 2017, , 1-19.e4.		5
148	Evaluation of surfactant proteins A, B, C, and D in articular cartilage, synovial membrane and synovial fluid of healthy as well as patients with osteoarthritis and rheumatoid arthritis. PLoS ONE, 2018, 13, e0203502.	2.5	5
149	Pathogenesis of Osteoarthritis in General. , 2017, , 1-25.		5
150	CCAAT/enhancer binding protein β (C/EBPβ) regulates the transcription of growth arrest and DNA damage-inducible protein 45 β (GADD45β) in articular chondrocytes. Pathology Research and Practice, 2016, 212, 302-309.	2.3	4
151	Cartilage and Chondrocytes. , 2017, , 34-59.e3.		4
152	CITED2 mediates the mechanical loading–induced suppression of adipokines in the infrapatellar fat pad. Annals of the New York Academy of Sciences, 2019, 1442, 153-164.	3.8	4
153	Cytokines, Growth Factors, and Bone-Derived Factors in Cartilage. , 2007, , 41-63.		4
154	The integrative analysis of DNA methylation and mRNA expression profiles confirmed the role of selenocompound metabolism pathway in Kashin-Beck disease. Cell Cycle, 2020, 19, 2351-2366.	2.6	3
155	Preparation of Immortalized Human Chondrocyte Cell Lines. , 1999, 18, 173-192.		2
156	Cytokines. Novartis Foundation Symposium, 1988, 136, 239-256.	1.1	2
157	Update on the Chondrocyte Lineage and Implications for Cell Therapy in Osteoarthritis. , 2007, , 53-76.		2
158	Chondrogenesis, joint formation, and cartilage metabolism. Arthritis Research and Therapy, 2012, 14, .	3.5	2
159	Cartilage Biology: Overview. , 2020, , 521-534.		2
160	Basal and IL-1β enhanced chondrocyte chemotactic activity on monocytes are co-dependent on both IKKα and IKKβ NF-κB activating kinases. Scientific Reports, 2021, 11, 21697.	3.3	2
161	Rheumatoid Arthritis and other Inflammatory Joint Pathologies. , 2006, , 843-869.		1
162	Do mouse models reflect the diversity of osteoarthritis in humans?. Arthritis and Rheumatism, 2012, 64, 3072-3075.	6.7	1

#	Article	IF	CITATIONS
163	Tribute To Stephen M Krane. Journal of Bone and Mineral Research, 2015, 30, 751-752.	2.8	1
164	Potential Mechanisms of PTOA: Inflammation. , 2015, , 201-209.		1
165	Osteoarthritis and the Immune System. , 2016, , 257-269.		1
166	Parathyroid hormone-related protein is abundant in osteoarthritic cartilage, and the parathyroid hormone-related protein 1-173 isoform is selectively induced by transforming growth factor Î ² in articular chondrocytes and suppresses generation of extracellular inorganic pyrophosphate. Arthritis and Rheumatism, 1998, 41, 2152-2164.	6.7	1
167	Cartilage and Chondrocytes. , 2009, , 37-69.		1
168	Cells for Cartilage Regeneration. , 2020, , 33-99.		1
169	Editorial [Hot Topic: Stem Cells and Osteoarthritis (Guest Editors: Nicolai Miosge and Mary B.) Tj ETQq1 1 0.784	314 rgBT / 0.8	Overlock 10
170	Non-coding RNAs and posttranscriptional regulation in cartilage and bone. IBMS BoneKEy, 2012, 9, .	0.0	0
171	Synovial inflammation correlates with meniscal pathology in a cohort of patients undergoing acl reconstruction for traumatic acl rupture. Osteoarthritis and Cartilage, 2012, 20, S56-S57.	1.3	0
172	Contribution of ELF3 to cartilage damage in a non-invasive mechanical loading mouse model with osteoarthritis-like pathology. Osteoarthritis and Cartilage, 2015, 23, A309-A310.	1.3	0
173	Cited2-mediated chondroprotective effects via suppression of adipogenesis and proinflammatory medators in the infrapatellar fat pad. Osteoarthritis and Cartilage, 2016, 24, S61.	1.3	0
174	The E74-like factor 3 (ELF3) suppresses type II collagen gene (COL2A1) transcription in chondrocytes by disrupting the SOX9 CBP/P300-mediated histone acetyl transferase activity. Osteoarthritis and Cartilage, 2016, 24, S145.	1.3	0
175	Macroscopic synovial inflammation correlates with symptoms and cartilage degradation in middle-aged patients undergoing arthroscopic surgery for meniscal tear Osteoarthritis and Cartilage, 2016, 24, S328.	1.3	0
176	Response to "Letter to the editor: Labral calcification plays a key role in hip pain and symptoms in femoroacetabular impingementâ€. Journal of Orthopaedic Surgery and Research, 2020, 15, 274.	2.3	0
177	Cells for Cartilage Regeneration. , 2018, , 1-67.		0
178	Toward Defining the Role of Ca2+ and MAP Kinases in Fluid-Induced Shear Regulation of Aggrecan in Chondrocytes. , 1998, , .		0
179	Contribution of joint tissue properties to load-induced osteoarthritis. Bone Reports, 2022, , 101602.	0.4	0