
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1948838/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	H5N1 Influenza — Continuing Evolution and Spread. New England Journal of Medicine, 2006, 355, 2174-2177.	27.0	352
2	T-705 (Favipiravir) Induces Lethal Mutagenesis in Influenza A H1N1 Viruses <i>In Vitro</i> . Journal of Virology, 2013, 87, 3741-3751.	3.4	326
3	The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. Journal of Experimental Medicine, 2006, 203, 689-697.	8.5	316
4	Lethality to Ferrets of H5N1 Influenza Viruses Isolated from Humans and Poultry in 2004. Journal of Virology, 2005, 79, 2191-2198.	3.4	315
5	Continuing challenges in influenza. Annals of the New York Academy of Sciences, 2014, 1323, 115-139.	3.8	300
6	Neuraminidase Inhibitor-Resistant Influenza Viruses May Differ Substantially in Fitness and Transmissibility. Antimicrobial Agents and Chemotherapy, 2005, 49, 4075-4084.	3.2	226
7	Comparison of Efficacies of RWJ-270201, Zanamivir, and Oseltamivir against H5N1, H9N2, and Other Avian Influenza Viruses. Antimicrobial Agents and Chemotherapy, 2001, 45, 2723-2732.	3.2	219
8	Influenza: Emergence and Control. Journal of Virology, 2004, 78, 8951-8959.	3.4	199
9	Characterization of H5N1 Influenza Viruses That Continue To Circulate in Geese in Southeastern China. Journal of Virology, 2002, 76, 118-126.	3.4	177
10	Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. Journal of General Virology, 2002, 83, 2497-2505.	2.9	174
11	Importance of Neuraminidase Active-Site Residues to the Neuraminidase Inhibitor Resistance of Influenza Viruses. Journal of Virology, 2006, 80, 8787-8795.	3.4	169
12	Epitope Mapping of the Hemagglutinin Molecule of a Highly Pathogenic H5N1 Influenza Virus by Using Monoclonal Antibodies. Journal of Virology, 2007, 81, 12911-12917.	3.4	168
13	Virulence May Determine the Necessary Duration and Dosage of Oseltamivir Treatment for Highly Pathogenic A/Vietnam/1203/04 Influenza Virus in Mice. Journal of Infectious Diseases, 2005, 192, 665-672.	4.0	160
14	Neuraminidase Inhibitor-Resistant Recombinant A/Vietnam/1203/04 (H5N1) Influenza Viruses Retain Their Replication Efficiency and Pathogenicity In Vitro and In Vivo. Journal of Virology, 2007, 81, 12418-12426.	3.4	155
15	Combination chemotherapy, a potential strategy for reducing the emergence of drug-resistant influenza A variants. Antiviral Research, 2006, 70, 121-131.	4.1	154
16	The neuraminidase inhibitor GS4104 (oseltamivir phosphate) is efficacious against A/Hong Kong/156/97 (H5N1) and A/Hong Kong/1074/99 (H9N2) influenza viruses. Antiviral Research, 2000, 48, 101-115.	4.1	151
17	Efficacy of Oseltamivir Therapy in Ferrets Inoculated with Different Clades of H5N1 Influenza Virus. Antimicrobial Agents and Chemotherapy, 2007, 51, 1414-1424.	3.2	141
18	Inefficient Transmission of H5N1 Influenza Viruses in a Ferret Contact Model. Journal of Virology, 2007, 81, 6890-6898.	3.4	138

#	Article	IF	CITATIONS
19	Immunization with Reverseâ€Genetics–Produced H5N1 Influenza Vaccine Protects Ferrets against Homologous and Heterologous Challenge. Journal of Infectious Diseases, 2006, 194, 159-167.	4.0	129
20	The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks. Journal of Virology, 2010, 84, 1527-1535.	3.4	124
21	Neuraminidase Inhibitor-Rimantadine Combinations Exert Additive and Synergistic Anti-Influenza Virus Effects in MDCK Cells. Antimicrobial Agents and Chemotherapy, 2004, 48, 4855-4863.	3.2	123
22	Drugs in Development for Influenza. Drugs, 2010, 70, 1349-1362.	10.9	123
23	Amantadine-Oseltamivir Combination therapy for H5N1 Influenza Virus Infection in Mice. Antiviral Therapy, 2007, 12, 363-370.	1.0	121
24	Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12915-12920.	7.1	115
25	Oseltamivir-Ribavirin Combination Therapy for Highly Pathogenic H5N1 Influenza Virus Infection in Mice. Antimicrobial Agents and Chemotherapy, 2008, 52, 3889-3897.	3.2	114
26	Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology, 2005, 341, 102-106.	2.4	107
27	Neuraminidase inhibitors for influenza B virus infection: Efficacy and resistance. Antiviral Research, 2013, 100, 520-534.	4.1	107
28	Antiviral resistance among highly pathogenic influenza A (H5N1) viruses isolated worldwide in 2002–2012 shows need for continued monitoring. Antiviral Research, 2013, 98, 297-304.	4.1	105
29	Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao People's Democratic Republic. Journal of General Virology, 2010, 91, 949-959.	2.9	102
30	Oseltamivir–Resistant Pandemic H1N1/2009 Influenza Virus Possesses Lower Transmissibility and Fitness in Ferrets. PLoS Pathogens, 2010, 6, e1001022.	4.7	96
31	Impaired Wound Healing Predisposes Obese Mice to Severe Influenza Virus Infection. Journal of Infectious Diseases, 2012, 205, 252-261.	4.0	96
32	Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck. Nature Communications, 2015, 6, 6553.	12.8	90
33	Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets. PLoS Pathogens, 2010, 6, e1000933.	4.7	76
34	Pathogenicity and Vaccine Efficacy of Different Clades of Asian H5N1 Avian Influenza A Viruses in Domestic Ducks. Journal of Virology, 2008, 82, 11374-11382.	3.4	73
35	Efficacy of H5 Influenza Vaccines Produced by Reverse Genetics in a Lethal Mouse Model. Journal of Infectious Diseases, 2005, 191, 1216-1220.	4.0	71
36	Generation of High-Yielding Influenza A Viruses in African Green Monkey Kidney (Vero) Cells by Reverse Genetics. Journal of Virology, 2004, 78, 1851-1857.	3.4	66

#	Article	IF	CITATIONS
37	Amantadine-oseltamivir combination therapy for H5N1 influenza virus infection in mice. Antiviral Therapy, 2007, 12, 363-70.	1.0	61
38	Combination Chemotherapy for Influenza. Viruses, 2010, 2, 1510-1529.	3.3	60
39	Oseltamivir-resistant Influenza A and B Viruses Pre- and Postantiviral Therapy in Children and Young Adults With Cancer. Pediatric Infectious Disease Journal, 2011, 30, 284-288.	2.0	59
40	Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals. MSphere, 2016, 1, .	2.9	56
41	The Epidemiological and Molecular Aspects of Influenza H5N1 Viruses at the Human-Animal Interface in Egypt. PLoS ONE, 2011, 6, e17730.	2.5	53
42	Identification of the I38T PA Substitution as a Resistance Marker for Next-Generation Influenza Virus Endonuclease Inhibitors. MBio, 2018, 9, .	4.1	53
43	Risk Assessment of H2N2 Influenza Viruses from the Avian Reservoir. Journal of Virology, 2014, 88, 1175-1188.	3.4	52
44	Novel Roles of Focal Adhesion Kinase in Cytoplasmic Entry and Replication of Influenza A Viruses. Journal of Virology, 2014, 88, 6714-6728.	3.4	52
45	Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivir-resistant H1N1 influenza viruses. Nature Communications, 2014, 5, 5029.	12.8	51
46	Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice. Scientific Reports, 2016, 6, 26742.	3.3	48
47	Oseltamivir Prophylactic Regimens Prevent H5N1 Influenza Morbidity and Mortality in a Ferret Model. Journal of Infectious Diseases, 2008, 197, 1315-1323.	4.0	47
48	Susceptibility of Highly Pathogenic H5N1 Influenza Viruses to the Neuraminidase Inhibitor Oseltamivir Differs In Vitro and in a Mouse Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 3088-3096.	3.2	47
49	Contribution of H7 haemagglutinin to amantadine resistance and infectivity of influenza virus. Journal of General Virology, 2007, 88, 1266-1274.	2.9	46
50	The Hemagglutinin Stem-Binding Monoclonal Antibody VIS410 Controls Influenza Virus-Induced Acute Respiratory Distress Syndrome. Antimicrobial Agents and Chemotherapy, 2016, 60, 2118-2131.	3.2	46
51	Determination of Neuraminidase Kinetic Constants Using Whole Influenza Virus Preparations and Correction for Spectroscopic Interference by a Fluorogenic Substrate. PLoS ONE, 2013, 8, e71401.	2.5	45
52	Continuing Threat of Influenza (H5N1) Virus Circulation in Egypt. Emerging Infectious Diseases, 2011, 17, 2306-2308.	4.3	44
53	A Novel Endonuclease Inhibitor Exhibits Broad-Spectrum Anti-Influenza Virus Activity <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2016, 60, 5504-5514.	3.2	44
54	Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antiviral Research, 2022, 200, 105281.	4.1	44

#	Article	IF	CITATIONS
55	Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses. Journal of Virology, 2015, 89, 10891-10900.	3.4	43
56	Influenza A and B viruses with reduced baloxavir susceptibility display attenuated in vitro fitness but retain ferret transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8593-8601.	7.1	43
57	Human-Like Receptor Specificity Does Not Affect the Neuraminidase-Inhibitor Susceptibility of H5N1 Influenza Viruses. PLoS Pathogens, 2008, 4, e1000043.	4.7	42
58	What Is the Optimal Therapy for Patients with H5N1 Influenza?. PLoS Medicine, 2009, 6, e1000091.	8.4	42
59	Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes. Journal of Virology, 2018, 92, .	3.4	42
60	Intramuscularly administered neuraminidase inhibitor peramivir is effective against lethal H5N1 influenza virus in mice. Antiviral Research, 2008, 80, 150-157.	4.1	41
61	Virulence and transmissibility of H1N2 influenza virus in ferrets imply the continuing threat of triple-reassortant swine viruses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15900-15905.	7.1	41
62	Fitness Costs for Influenza B Viruses Carrying Neuraminidase Inhibitor-Resistant Substitutions: Underscoring the Importance of E119A and H274Y. Antimicrobial Agents and Chemotherapy, 2014, 58, 2718-2730.	3.2	41
63	Competitive Fitness of Oseltamivir-Sensitive and -Resistant Highly Pathogenic H5N1 Influenza Viruses in a Ferret Model. Journal of Virology, 2010, 84, 8042-8050.	3.4	38
64	Single- and multiple-clade influenza A H5N1 vaccines induce cross protection in ferrets. Vaccine, 2009, 27, 4187-4195.	3.8	37
65	The Neuraminidase Inhibitor Oseltamivir Is Effective Against A/Anhui/1/2013 (H7N9) Influenza Virus in a Mouse Model of Acute Respiratory Distress Syndrome. Journal of Infectious Diseases, 2014, 209, 1343-1353.	4.0	36
66	Assessment of the efficacy of the neuraminidase inhibitor oseltamivir against 2009 pandemic H1N1 influenza virus in ferrets. Antiviral Research, 2011, 91, 81-88.	4.1	35
67	Prevention of influenza by targeting host receptors using engineered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6401-6406.	7.1	33
68	Antiviral Susceptibility of Avian and Swine Influenza Virus of the N1 Neuraminidase Subtype. Journal of Virology, 2010, 84, 9800-9809.	3.4	31
69	Consequences of resistance: <i>in vitro</i> fitness, <i>in vivo</i> infectivity, and transmissibility of oseltamivirâ€resistant influenza A viruses. Influenza and Other Respiratory Viruses, 2013, 7, 50-57.	3.4	29
70	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	4.7	29
71	Fitness of neuraminidase inhibitor-resistant influenza A viruses. Current Opinion in Virology, 2011, 1, 574-581.	5.4	27
72	Gain-of-Function Experiments on H7N9. Science, 2013, 341, 612-613.	12.6	24

#	Article	IF	CITATIONS
73	Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Research, 2021, 194, 105158.	4.1	24
74	Therapeutics Against Influenza. Current Topics in Microbiology and Immunology, 2011, 370, 273-300.	1.1	23
75	Competitive Fitness of Influenza B Viruses with Neuraminidase Inhibitor-Resistant Substitutions in a Coinfection Model of the Human Airway Epithelium. Journal of Virology, 2015, 89, 4575-4587.	3.4	23
76	Novel Genotyping and Quantitative Analysis of Neuraminidase Inhibitor Resistance-Associated Mutations in Influenza A Viruses by Single-Nucleotide Polymorphism Analysis. Antimicrobial Agents and Chemotherapy, 2011, 55, 4718-4727.	3.2	22
77	Influenza H5 virus escape mutants: immune protection and antibody production in mice. Virus Research, 2004, 99, 205-208.	2.2	18
78	The PA Endonuclease Inhibitor RO-7 Protects Mice from Lethal Challenge with Influenza A or B Viruses. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	17
79	Influenza A viruses of swine circulating in the United States during 2009–2014 are susceptible to neuraminidase inhibitors but show lineage-dependent resistance to adamantanes. Antiviral Research, 2015, 117, 10-19.	4.1	15
80	Non-rigid Diarylmethyl Analogs of Baloxavir as Cap-Dependent Endonuclease Inhibitors of Influenza Viruses. Journal of Medicinal Chemistry, 2020, 63, 9403-9420.	6.4	15
81	Drug Repurposing Identifies Inhibitors of Oseltamivirâ€Resistant Influenza Viruses. Angewandte Chemie - International Edition, 2016, 55, 3438-3441.	13.8	14
82	Susceptibility of avian influenza viruses of the N6 subtype to the neuraminidase inhibitor oseltamivir. Antiviral Research, 2012, 93, 322-329.	4.1	13
83	Pathogenicity and peramivir efficacy in immunocompromised murine models of influenza B virus infection. Scientific Reports, 2017, 7, 7345.	3.3	13
84	A pharmacologically immunosuppressed mouse model for assessing influenza B virus pathogenicity and oseltamivir treatment. Antiviral Research, 2017, 148, 20-31.	4.1	13
85	Influenza A (H15N4) Virus Isolation in Western Siberia, Russia. Journal of Virology, 2013, 87, 3578-3582.	3.4	11
86	An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness. Journal of General Virology, 2018, 99, 292-302.	2.9	11
87	A Novel Neuraminidase-Dependent Hemagglutinin Cleavage Mechanism Enables the Systemic Spread of an H7N6 Avian Influenza Virus. MBio, 2019, 10, .	4.1	10
88	Sialic Acid-Binding Protein <i>Sp</i> 2CBMTD Protects Mice against Lethal Challenge with Emerging Influenza A (H7N9) Virus. Antimicrobial Agents and Chemotherapy, 2015, 59, 1495-1504.	3.2	9
89	Competitive Fitness of Influenza B Viruses Possessing E119A and H274Y Neuraminidase Inhibitor Resistance–Associated Substitutions in Ferrets. PLoS ONE, 2016, 11, e0159847.	2.5	9
90	Oseltamivir Population Pharmacokinetics in the Ferret: Model Application for Pharmacokinetic/Pharmacodynamic Study Design. PLoS ONE, 2015, 10, e0138069.	2.5	8

#	Article	IF	CITATIONS
91	Multiple polymerase acidic (PA) I38X substitutions in influenza A(H1N1)pdm09 virus permit polymerase activity and cause reduced baloxavir inhibition. Journal of Antimicrobial Chemotherapy, 2021, 76, 957-960.	3.0	8
92	Influenza A virus polymerase acidic protein E23G/K substitutions weaken key baloxavir drug-binding contacts with minimal impact on replication and transmission. PLoS Pathogens, 2022, 18, e1010698.	4.7	8
93	Neuraminidase inhibitor susceptibility and neuraminidase enzyme kinetics of human influenza A and B viruses circulating in Thailand in 2010–2015. PLoS ONE, 2018, 13, e0190877.	2.5	7
94	Synthesis, inhibitory activity and oral dosing formulation of AV5124, the structural analogue of influenza virus endonuclease inhibitor baloxavir. Journal of Antimicrobial Chemotherapy, 2021, 76, 1010-1018.	3.0	7
95	Competitive transmissibility and fitness of oseltamivirsensitive and resistant pandemic influenza H1N1 viruses in ferrets. Influenza and Other Respiratory Viruses, 2011, 5, 79-82.	3.4	7
96	Optimizing T-705 (favipiravir) treatment of severe influenza B virus infection in the immunocompromised mouse model. Journal of Antimicrobial Chemotherapy, 2019, 74, 1333-1341.	3.0	6
97	Baloxavir Treatment Delays Influenza B Virus Transmission in Ferrets and Results in Limited Generation of Drug-Resistant Variants. Antimicrobial Agents and Chemotherapy, 2021, 65, e0113721.	3.2	5
98	Influenza B viruses from different genetic backgrounds are variably impaired by neuraminidase inhibitor resistance–associated substitutions. Antiviral Research, 2020, 173, 104669.	4.1	4
99	Development of a Mouse Model to Explore CD4 T Cell Specificity, Phenotype, and Recruitment to the Lung after Influenza B Infection. Pathogens, 2022, 11, 251.	2.8	4
100	Influenza A virus polymerase acidic protein E23R substitution is a marker of reduced susceptibility to baloxavir. Antiviral Research, 2022, 204, 105369.	4.1	4
101	<i>In Vitro</i> Profiling of Laninamivir-Resistant Substitutions in N3 to N9 Avian Influenza Virus Neuraminidase Subtypes and Their Association with <i>In Vivo</i> Susceptibility. Journal of Virology, 2020, 95, .	3.4	3
102	Monoclonal Antibody Therapy Protects Pharmacologically Immunosuppressed Mice from Lethal Infection with Influenza B Virus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	3
103	Cross-protection studies with H5 influenza viruses. International Congress Series, 2001, 1219, 767-773.	0.2	1
104	Drug Repurposing Identifies Inhibitors of Oseltamivirâ€Resistant Influenza Viruses. Angewandte Chemie, 2016, 128, 3499-3502.	2.0	1
105	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		Ο
106	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
107	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
108	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0

0

#	Article	IF	CITATIONS
109	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		Ο

110 Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.