John E Hayes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1947939/publications.pdf

Version: 2024-02-01

71004 87275 6,552 148 43 74 citations h-index g-index papers 179 179 179 4976 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Massively collaborative crowdsourced research on COVID19 and the chemical senses: Insights and outcomes. Food Quality and Preference, 2022, 97, 104483.	2.3	8
2	Do children really eat what they like? Relationships between liking and intake across laboratory test-meals. Appetite, 2022, 172, 105946.	1.8	10
3	Examining the Role of Food Form on Children's Self-Regulation of Energy Intake. Frontiers in Nutrition, 2022, 9, 791718.	1.6	3
4	Comparison of Carcinogen Biomarkers in Smokers of Menthol and Nonmenthol Cigarettes: The 2015–2016 National Health and Nutrition Examination Survey Special Sample. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1539-1545.	1.1	5
5	Synergistic and antagonistic ingredient interactions as a sugar reduction strategy in chocolate milk. Journal of Sensory Studies, 2022, 37, .	0.8	5
6	Salivary $\hat{l}\pm$ -amylase activity and flow rate explain differences in temporal flavor perception in a chewing gum matrix comprising starch-limonene inclusion complexes. Food Research International, 2022, 158, 111573.	2.9	4
7	Common bitter stimuli show differences in their temporal profiles before and after swallowing. Food Quality and Preference, 2021, 87, 104041.	2.3	8
8	Perspective: Measuring Sweetness in Foods, Beverages, and Diets: Toward Understanding the Role of Sweetness in Health. Advances in Nutrition, 2021, 12, 343-354.	2.9	20
9	Examining Front-of-Package Product Names and Ingredient Lists of Infant and Toddler Food Containing Vegetables. Journal of Nutrition Education and Behavior, 2021, 53, 96-102.	0.3	1
10	Flavor and product messaging are the two most important drivers of electronic cigarette selection in a choice-based task. Scientific Reports, 2021, 11, 4689.	1.6	6
11	Design aspects of vaginal applicators that influence acceptance among target users. Scientific Reports, 2021, 11, 9802.	1.6	9
12	Infant and Toddler Responses to Bitter-Tasting Novel Vegetables: Findings from the Good Tastes Study. Journal of Nutrition, 2021, 151, 3240-3252.	1.3	11
13	Development and validation of the Reasons Individuals Stop Eating Questionnaire (RISE-Q): A novel tool to characterize satiation. Appetite, 2021, 161, 105127.	1.8	14
14	Differences in preferred fat level, sweetener type, and amount of added sugar in chocolate milk in a choice task relate to physical activity and orthorexia. Appetite, 2021, 163, 105214.	1.8	7
15	Associations between chronic cigarette smoking and taste function: Results from the 2013–2014 national health and nutrition examination survey. Physiology and Behavior, 2021, 240, 113554.	1.0	12
16	Female sweet-likers have enhanced cross-modal interoceptive abilities. Appetite, 2021, 165, 105290.	1.8	3
17	Capsaicin burn increases thickness discrimination thresholds independently of chronic chili intake. Food Research International, 2021, 149, 110702.	2.9	15
18	Genetic variation in sensation affects food liking and intake. Current Opinion in Food Science, 2021, 42, 203-214.	4.1	11

#	Article	IF	Citations
19	Preferred beer styles influence both perceptual maps and semantic descriptions of dry hops. Food Quality and Preference, 2021, 94, 104337.	2.3	6
20	Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .	1.1	119
21	Harsh and Sweet Sensations Predict Acute Liking of Electronic Cigarettes, but Flavor Does Not Affect Acute Nicotine Intake: A Pilot Laboratory Study in Men. Nicotine and Tobacco Research, 2021, 23, 687-693.	1.4	12
22	Food choice: behavioral aspects. , 2021, , .		1
23	Self-Reported Olfactory Dysfunction and Diet Quality: Findings from the 2011–2014 National Health and Nutrition Examination Survey (NHANES). Nutrients, 2021, 13, 4561.	1.7	15
24	Associations of olfactory dysfunction with anthropometric and cardiometabolic measures: Findings from the $2013\hat{a}\in 2014$ national health and nutrition examination survey (NHANES). Physiology and Behavior, 2020, 215, 112702.	1.0	28
25	Smell and taste changes are early indicators of the COVID-19 pandemic and political decision effectiveness. Nature Communications, 2020, 11, 5152.	5.8	74
26	Effects of Sweet-Liking on Body Composition Depend on Age and Lifestyle: A Challenge to the Simple Sweet-Liking—Obesity Hypothesis. Nutrients, 2020, 12, 2702.	1.7	18
27	Individual Differences in Thresholds and Consumer Preferences for Rotundone Added to Red Wine. Nutrients, 2020, 12, 2522.	1.7	7
28	More Than Smellâ€"COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chemical Senses, 2020, 45, 609-622.	1.1	375
29	Discrimination of Isointense Bitter Stimuli in a Beer Model System. Nutrients, 2020, 12, 1560.	1.7	7
30	Assessment of Midline Lingual Point-Pressure Somatosensation Using Von Frey Hair Monofilaments. Journal of Visualized Experiments, 2020, , .	0.2	2
31	Blending dark green vegetables with fruits in commercially available infant foods makes them taste like fruit. Appetite, 2020, 150, 104652.	1.8	16
32	Personality traits and bitterness perception influence the liking and intake of pale ale style beers. Food Quality and Preference, 2020, 86, 103994.	2.3	13
33	Predominant Qualities Evoked by Quinine, Sucrose, and Capsaicin Associate With PROP Bitterness, but not <i>TAS2R38</i> Genotype. Chemical Senses, 2020, 45, 383-390.	1.1	27
34	Studies of Human Twins Reveal Genetic Variation That Affects Dietary Fat Perception. Chemical Senses, 2020, 45, 467-481.	1.1	6
35	Interactions between retronasal olfaction and taste influence vegetable liking and consumption: A psychophysical investigation. Journal of Agriculture and Food Research, 2020, 2, 100044.	1.2	14
36	Influence of Sensation and Liking on Eating and Drinking. , 2020, , 131-155.		10

#	Article	IF	CITATIONS
37	Biological Basis and Functional Assessment of Oral Sensation. , 2020, , 1-25.		1
38	Influence of Sensation and Liking on Eating and Drinking. , 2020, , 1-25.		2
39	Biological Basis and Functional Assessment of Oral Sensation. , 2020, , 157-181.		2
40	Learned color taste associations in a repeated brief exposure paradigm. Food Quality and Preference, 2019, 71, 354-365.	2.3	23
41	Evaluation of Sweetener Synergy in Humans by Isobole Analyses. Chemical Senses, 2019, 44, 571-582.	1.1	13
42	Exploring variability in detection thresholds of microparticles through participant characteristics. Food and Function, 2019, 10, 5386-5397.	2.1	19
43	Vanillin modifies affective responses to but not burning sensations from ethanol in mixtures. Physiology and Behavior, 2019, 211, 112668.	1.0	4
44	Regional Variation of Bitter Taste and Aftertaste in Humans. Chemical Senses, 2019, 44, 721-732.	1.1	21
45	Rejection of labrusca-type aromas in wine differs by wine expertise and geographic region. Food Quality and Preference, 2019, 74, 147-154.	2.3	12
46	Quantifying Sweet Taste Liker Phenotypes: Time for Some Consistency in the Classification Criteria. Nutrients, 2019, 11, 129.	1.7	49
47	Oral somatosensatory acuity is related to particle size perception in chocolate. Scientific Reports, 2019, 9, 7437.	1.6	53
48	Using Herbs and Spices to Increase Vegetable Intake Among Rural Adolescents. Journal of Nutrition Education and Behavior, 2019, 51, 806-816.e1.	0.3	10
49	Demonstrating cross-modal enhancement in a real food with a modified ABX test. Food Quality and Preference, 2019, 77, 206-213.	2.3	34
50	Putting out the fire – Efficacy of common beverages in reducing oral burn from capsaicin. Physiology and Behavior, 2019, 208, 112557.	1.0	17
51	Nutritional Content and Ingredients of Commercial Infant and Toddler Food Pouches Compared With Other Packages Available in the United States. Nutrition Today, 2019, 54, 305-312.	0.6	20
52	Reconsidering the classification of sweet taste liker phenotypes: A methodological review. Food Quality and Preference, 2019, 72, 56-76.	2.3	35
53	Using sensory and consumer science in drug delivery system optimization: mixed methods in women of color as a case study. Food Quality and Preference, 2019, 73, 293-302.	2.3	3
54	Bitter and sweet tasting molecules: It's complicated. Neuroscience Letters, 2019, 700, 56-63.	1.0	48

#	Article	IF	CITATIONS
55	Mary Poppins was right: Adding small amounts of sugar or salt reduces the bitterness of vegetables. Appetite, 2018, 126, 90-101.	1.8	32
56	Variety and content of commercial infant and toddler vegetable products manufactured and sold in the United States. American Journal of Clinical Nutrition, 2018, 107, 576-583.	2.2	48
57	Increasing flavor variety with herbs and spices improves relative vegetable intake in children who are propylthiouracil (PROP) tasters relative to nontasters. Physiology and Behavior, 2018, 188, 48-57.	1.0	21
58	Herbs and spices increase liking and preference for vegetables among rural high school students. Food Quality and Preference, 2018, 68, 125-134.	2.3	18
59	Qualitative exploration of intrinsic and extrinsic factors that influence acceptability of semisoft vaginal suppositories. BMC Women's Health, 2018, 18, 170.	0.8	7
60	Dose-Response Relationships for Vanilla Flavor and Sucrose in Skim Milk: Evidence of Synergy. Beverages, 2018, 4, 73.	1.3	41
61	Self-reported Smoking Status, TAS2R38 Variants, and Propylthiouracil Phenotype: An Exploratory Crowdsourced Cohort Study. Chemical Senses, 2018, 43, 617-625.	1.1	14
62	Influence of biological, experiential and psychological factors in wine preference segmentation. Australian Journal of Grape and Wine Research, 2017, 23, 154-161.	1.0	23
63	Binding of Caffeine and Quinine by Whey Protein and the Effect on Bitterness. Journal of Food Science, 2017, 82, 509-516.	1.5	26
64	Effect of fat content on the physical properties and consumer acceptability of vanilla ice cream. Journal of Dairy Science, 2017, 100, 5217-5227.	1.4	41
65	Soy protein concentrate mitigates markers of colonic inflammation and loss of gut barrier function in vitro and in vivo. Journal of Nutritional Biochemistry, 2017, 40, 201-208.	1.9	28
66	Characterizing dynamic sensory properties of nutritive and nonnutritive sweeteners with temporal checkâ€allâ€thatâ€apply. Journal of Sensory Studies, 2017, 32, e12270.	0.8	38
67	Sensory Aspects of Bitter and Sweet Tastes During Early Childhood. Nutrition Today, 2017, 52, S41-S51.	0.6	15
68	Sip and spit or sip and swallow: Choice of method differentially alters taste intensity estimates across stimuli. Physiology and Behavior, 2017, 181, 95-99.	1.0	20
69	Man vs. Machine: A Junior‣evel Laboratory Exercise Comparing Human and Instrumental Detection Limits. Journal of Food Science Education, 2017, 16, 72-76.	1.0	0
70	Developmental Readiness, Caregiver and Child Feeding Behaviors, and Sensory Science as a Framework for Feeding Young Children. Nutrition Today, 2017, 52, S30-S40.	0.6	14
71	Perceptual and affective responses to sampled capsaicin differ by reported intake. Food Quality and Preference, 2017, 55, 26-34.	2.3	54
72	Degree of free fatty acid saturation influences chocolate rejection in human assessors. Chemical Senses, 2017, 42, 161-166.	1.1	13

#	Article	IF	CITATIONS
73	Understanding taste and texture perception to enhance vegetable acceptance. Proceedings of the Nutrition Society, $2017, 76, .$	0.4	8
74	Taste: Vertebratesâ€"Psychophysics â~†., 2017,,.		1
75	Individual Differences in Multisensory Flavor Perception. , 2016, , 185-210.		7
76	Effects of Matrix Composition on Detection Threshold Estimates for Methyl Anthranilate and 2-Aminoacetophenone. Foods, 2016, 5, 35.	1.9	23
77	Drivers of Vaginal Drug Delivery System Acceptability from Internet-Based Conjoint Analysis. PLoS ONE, 2016, 11, e0150896.	1.1	15
78	Expectation and expectoration: Information manipulation alters spitting volume, a common proxy for salivary flow. Physiology and Behavior, 2016, 167, 180-187.	1.0	6
79	Chocolate not necessarily healthier or tastier. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6318-E6318.	3.3	1
80	Salivary protein levels as a predictor of perceived astringency in model systems and solid foods. Physiology and Behavior, 2016, 163, 56-63.	1.0	24
81	Innovative sensory methods to access acceptability of mixed polymer semisoft ovules for microbicide applications. Drug Delivery and Translational Research, 2016, 6, 551-564.	3.0	3
82	Consumer peach preferences and purchasing behavior: a mixed methods study. Journal of the Science of Food and Agriculture, 2016, 96, 2451-2461.	1.7	17
83	TongueSim: Development of an Automated Method for Rapid Assessment of Fungiform Papillae Density for Taste Research. Chemical Senses, 2016, 41, 357-365.	1.1	17
84	Behavioral measures of risk tasking, sensation seeking and sensitivity to reward may reflect different motivations for spicy food liking and consumption. Appetite, 2016, 103, 411-422.	1.8	67
85	Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes. Physiology and Behavior, 2016, 156, 117-127.	1.0	70
86	Type of milk typically consumed, and stated preference, but not health consciousness affect revealed preferences for fat in milk. Food Quality and Preference, 2016, 49, 92-99.	2.3	29
87	Investigating Mixture Interactions of Astringent Stimuli Using the Isobole Approach. Chemical Senses, 2016, 41, bjw064.	1.1	12
88	Perception of chemesthetic stimuli in groups who differ by food involvement and culinary experience. Food Quality and Preference, 2015, 46, 142-150.	2.3	11
89	An Introduction to this Special Issue: Chemosensation and Health. Chemosensory Perception, 2015, 8, 109-111.	0.7	2
90	Quinine Bitterness and Grapefruit Liking Associate with Allelic Variants in TAS2R31. Chemical Senses, 2015, 40, 437-443.	1.1	61

#	Article	IF	CITATIONS
91	Gender differences in the influence of personality traits on spicy food liking and intake. Food Quality and Preference, 2015, 42, 12-19.	2.3	64
92	Maximizing overall liking results in a superior product to minimizing deviations from ideal ratings: An optimization case study with coffee-flavored milk. Food Quality and Preference, 2015, 42, 27-36.	2.3	17
93	Check-all-that-apply (CATA), sorting, and polarized sensory positioning (PSP) with astringent stimuli. Food Quality and Preference, 2015, 45, 41-49.	2.3	60
94	The Relationships Between Common Measurements of Taste Function. Chemosensory Perception, 2015, 8, 11-18.	0.7	146
95	Perceptual Mapping of Chemesthetic Stimuli in Naive Assessors. Chemosensory Perception, 2015, 8, 19-32.	0.7	10
96	Perceptual Qualities of Ethanol Depend on Concentration, and Variation in These Percepts Associates with Drinking Frequency. Chemosensory Perception, 2015, 8, 149-157.	0.7	51
97	Nonnutritive sweeteners are not supernormal stimuli. International Journal of Obesity, 2015, 39, 254-259.	1.6	47
98	Crowdsourcing taste research: genetic and phenotypic predictors of bitter taste perception as a model. Frontiers in Integrative Neuroscience, 2014, 8, 33.	1.0	80
99	Release of Tenofovir from Carrageenan-Based Vaginal Suppositories. Pharmaceutics, 2014, 6, 366-377.	2.0	24
100	Firmness Perception Influences Women's Preferences for Vaginal Suppositories. Pharmaceutics, 2014, 6, 512-529.	2.0	18
101	Polymorphisms in <i><scp>TRPV</scp>1</i> and <i><scp>TAS</scp>2Rs</i> Associate with Sensations from Sampled Ethanol. Alcoholism: Clinical and Experimental Research, 2014, 38, 2550-2560.	1.4	65
102	Exploring associations between taste perception, oral anatomy and polymorphisms in the carbonic anhydrase (gustin) gene CA6. Physiology and Behavior, 2014, 128, 148-154.	1.0	68
103	Just-about-right and ideal scaling provide similar insights into the influence of sensory attributes on liking. Food Quality and Preference, 2014, 37, 71-78.	2.3	53
104	Physical Approaches to Masking Bitter Taste: Lessons from Food and Pharmaceuticals. Pharmaceutical Research, 2014, 31, 2921-2939.	1.7	91
105	Interpreting consumer preferences: Physicohedonic and psychohedonic models yield different information in a coffee-flavored dairy beverage. Food Quality and Preference, 2014, 36, 27-32.	2.3	27
106	Regional Differences in Suprathreshold Intensity for Bitter and Umami Stimuli. Chemosensory Perception, 2014, 7, 147-157.	0.7	60
107	Consumer acceptability of high hydrostatic pressure (HHP)-treated ground beef patties. LWT - Food Science and Technology, 2014, 56, 207-210.	2.5	23
108	Are Sugars Addictive? Perspectives for Practitioners. , 2014, , 199-215.		10

#	Article	IF	Citations
109	Relationships between Perceptual Attributes and Rheology in Over-the-Counter Vaginal Products: A Potential Tool for Microbicide Development. PLoS ONE, 2014, 9, e105614.	1.1	8
110	Personality factors predict spicy food liking and intake. Food Quality and Preference, 2013, 28, 213-221.	2.3	137
111	Rebaudioside A and Rebaudioside D Bitterness do not Covary with Acesulfame-K Bitterness or Polymorphisms in TAS2R9 and TAS2R31. Chemosensory Perception, 2013, 6, 109-117.	0.7	61
112	Masking Vegetable Bitterness to Improve Palatability Depends on Vegetable Type and Taste Phenotype. Chemosensory Perception, 2013, 6, 8-19.	0.7	78
113	Do Polymorphisms in the TAS1R1 Gene Contribute to Broader Differences in Human Taste Intensity?. Chemical Senses, 2013, 38, 719-728.	1.1	23
114	Direct comparison of the generalized visual analog scale (gVAS) and general labeled magnitude scale (gLMS). Food Quality and Preference, 2013, 28, 36-44.	2.3	126
115	Explaining tolerance for bitterness in chocolate ice cream using solid chocolate preferences. Journal of Dairy Science, 2013, 96, 4938-4944.	1.4	18
116	Do polymorphisms in chemosensory genes matter for human ingestive behavior?. Food Quality and Preference, 2013, 30, 202-216.	2.3	137
117	Shape of vaginal suppositories affects willingness-to-try and preference. Antiviral Research, 2013, 97, 280-284.	1.9	22
118	Bitterness of the Non-nutritive Sweetener Acesulfame Potassium Varies With Polymorphisms in TAS2R9 and TAS2R31. Chemical Senses, 2013, 38, 379-389.	1.1	74
119	User Preferences in a Carrageenan-Based Vaginal Drug Delivery System. PLoS ONE, 2013, 8, e54975.	1.1	25
120	Tolerance for High Flavanol Cocoa Powder in Semisweet Chocolate. Nutrients, 2013, 5, 2258-2267.	1.7	22
121	Wine Expertise Predicts Taste Phenotype. American Journal of Enology and Viticulture, 2012, 63, 80-84.	0.9	45
122	Rejection Thresholds in Solid Chocolate-Flavored Compound Coating. Journal of Food Science, 2012, 77, S390-S393.	1.5	20
123	Differences in the Chemesthetic Subqualities of Capsaicin, Ibuprofen, and Olive Oil. Chemical Senses, 2012, 37, 471-478.	1.1	36
124	Rejection thresholds in chocolate milk: Evidence for segmentation. Food Quality and Preference, 2012, 26, 128-133.	2.3	54
125	Predictors of Relapse in a Bupropion Trial for Smoking Cessation in Recently-Abstinent Alcoholics: Preliminary Results Using an Aggregate Genetic Risk Score. Substance Abuse: Research and Treatment, 2012, 6, SART.S8866.	0.5	20
126	Using Milk Fat to Reduce the Irritation and Bitter Taste of Ibuprofen. Chemosensory Perception, 2012, 5, 231-236.	0.7	25

#	Article	IF	CITATIONS
127	Otitis media exposure associates with dietary preference and adiposity: A community-based observational study of at-risk preschoolers. Physiology and Behavior, 2012, 106, 264-271.	1.0	34
128	Quantitative perceptual differences among over-the-counter vaginal products using a standardized methodology: implications for microbicide development. Contraception, 2011, 84, 184-193.	0.8	18
129	Asymmetric dominance as a potential source of bias in hedonic testing. Food Quality and Preference, 2011, 22, 559-566.	2.3	8
130	Two decades of supertasting: Where do we stand?. Physiology and Behavior, 2011, 104, 1072-1074.	1.0	96
131	Allelic Variation in TAS2R Bitter Receptor Genes Associates with Variation in Sensations from and Ingestive Behaviors toward Common Bitter Beverages in Adults. Chemical Senses, 2011, 36, 311-319.	1.1	213
132	Vegetable Intake in College-Aged Adults Is Explained by Oral Sensory Phenotypes and TAS2R38 Genotype. Chemosensory Perception, 2010, 3, 137-148.	0.7	177
133	Response to "Lack of Relation Between Bitter Taste Receptor <i>TAS2R38</i> and BMI in Adults― Obesity, 2010, 18, 433-433.	1.5	8
134	Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking. Physiology and Behavior, 2010, 100, 369-380.	1.0	186
135	Taste: Vertebrate Psychophysics. , 2009, , 881-886.		5
136	Surveying Food and Beverage Liking. Annals of the New York Academy of Sciences, 2009, 1170, 558-568.	1.8	123
137	Transdisciplinary Perspectives on Sweetness. Chemosensory Perception, 2008, 1, 48-57.	0.7	37
138	Oral sensory phenotype identifies level of sugar and fat required for maximal liking. Physiology and Behavior, 2008, 95, 77-87.	1.0	129
139	Supertasting and PROP Bitterness Depends on More Than the TAS2R38 Gene. Chemical Senses, 2008, 33, 255-265.	1.1	263
140	Propylthiouracil (PROP) Taste., 2008,, 391-399.		4
141	Revisiting Sugar-Fat Mixtures: Sweetness and Creaminess Vary with Phenotypic Markers of Oral Sensation. Chemical Senses, 2007, 32, 225-236.	1.1	161
142	Bitter taste markers explain variability in vegetable sweetness, bitterness, and intake. Physiology and Behavior, 2006, 87, 304-313.	1.0	345
143	Psychophysics of sweet and fat perception in obesity: problems, solutions and new perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1137-1148.	1.8	306
144	Genetic differences in sweet taste perception. , 2006, , 30-53.		6

#	Article	IF	CITATIONS
145	Sweet and bitter tastes of alcoholic beverages mediate alcohol intake in of-age undergraduates. Physiology and Behavior, 2005, 83, 821-831.	1.0	154
146	Individual Differences in Perception of Bitterness from Capsaicin, Piperine and Zingerone. Chemical Senses, 2004, 29, 53-60.	1.1	67
147	Capsaicin as a probe of the relationship between bitter taste and chemesthesis. Physiology and Behavior, 2003, 79, 811-821.	1.0	85
148	Turbidity as a Measure of Salivary Protein Reactions with Astringent Substances. Chemical Senses, 2002, 27, 653-659.	1.1	106