Jun-ichi Horinaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1947516/publications.pdf

Version: 2024-02-01

		840776	888059
50	358	11	17
papers	citations	h-index	g-index
			070
51	51	51	379
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Addition of glycerol enhances the flexibility of gelatin hydrogel sheets; application for in utero tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 921-931.	3.4	8
2	Characterization of a Branched Polysaccharide Dextran Based on the Stress-Optical Rule. Nihon Reoroji Gakkaishi, 2021, 49, 329-335.	1.0	1
3	Effect of moisture in κ-carrageenan films on their tensile and relaxation behavior studied by correlation between stress and birefringence. Rheologica Acta, 2020, 59, 765-770.	2.4	O
4	Rheological properties of concentrated solutions of fucoidan in water and in an ionic liquid. Polymer, 2020, 211, 123090.	3.8	3
5	Application of a Clapeyron-Type Equation to the Volume Phase Transition of Polymer Gels. Gels, 2020, 6, 25.	4.5	3
6	Swelling behavior of a polyacrylamide gel in water/acetonitrile mixtures across the solvent phase separation temperatures. Colloid and Polymer Science, 2020, 298, 435-440.	2.1	3
7	Stress-Optical Coefficients for D-Glucans in Ionic Liquid Solutions. Nihon Reoroji Gakkaishi, 2020, 48, 185-190.	1.0	1
8	Creep and solvent squeeze behavior of κ-carrageenan gels under compression. Colloid and Polymer Science, 2019, 297, 1161-1166.	2.1	0
9	Crossover behavior on temperature dependence of volume of poly(ethylene oxide)-poly(propylene) Tj ETQq1 1	0.784314 2.1	rgBŢ /Overlo <mark>c</mark> k
10	Effect of Adding Fructose on Uniaxial Tensile Behavior of Pullulan Films. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 1-5.	0.2	1
10	Effect of Adding Fructose on Uniaxial Tensile Behavior of Pullulan Films. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 1-5. Rheological Properties of Concentrated Solutions ofÂa Branched Polysaccharide Dextran in an Ionic Liquid. Nihon Reoroji Gakkaishi, 2019, 47, 155-159.	0.2	2
	Society of Materials Science, Japan, 2019, 68, 1-5. Rheological Properties of Concentrated Solutions ofÂa Branched Polysaccharide Dextran in an Ionic		
11	Society of Materials Science, Japan, 2019, 68, 1-5. Rheological Properties of Concentrated Solutions ofÂa Branched Polysaccharide Dextran in an Ionic Liquid. Nihon Reoroji Gakkaishi, 2019, 47, 155-159. Modeling and Comparison with Experiment for Solvent Squeezing from Polymer Gels. Nihon Reoroji	1.0	2
11 12	Society of Materials Science, Japan, 2019, 68, 1-5. Rheological Properties of Concentrated Solutions ofÂa Branched Polysaccharide Dextran in an Ionic Liquid. Nihon Reoroji Gakkaishi, 2019, 47, 155-159. Modeling and Comparison with Experiment for Solvent Squeezing from Polymer Gels. Nihon Reoroji Gakkaishi, 2019, 47, 25-29. Volume phase transition of a polymer gel induced by phase separation of mixed solvents of water and	1.0	1
11 12 13	Society of Materials Science, Japan, 2019, 68, 1-5. Rheological Properties of Concentrated Solutions ofÂa Branched Polysaccharide Dextran in an Ionic Liquid. Nihon Reoroji Gakkaishi, 2019, 47, 155-159. Modeling and Comparison with Experiment for Solvent Squeezing from Polymer Gels. Nihon Reoroji Gakkaishi, 2019, 47, 25-29. Volume phase transition of a polymer gel induced by phase separation of mixed solvents of water and 2â€butoxyethanol. Journal of Applied Polymer Science, 2018, 135, 46366. Effect of Saccharide and Alditol Additives on Uniaxial Tensile Behavior of Gellan Films. Journal of	1.0	2 1 4
11 12 13	Society of Materials Science, Japan, 2019, 68, 1-5. Rheological Properties of Concentrated Solutions ofÂa Branched Polysaccharide Dextran in an Ionic Liquid. Nihon Reoroji Gakkaishi, 2019, 47, 155-159. Modeling and Comparison with Experiment for Solvent Squeezing from Polymer Gels. Nihon Reoroji Gakkaishi, 2019, 47, 25-29. Volume phase transition of a polymer gel induced by phase separation of mixed solvents of water and 2â€butoxyethanol. Journal of Applied Polymer Science, 2018, 135, 46366. Effect of Saccharide and Alditol Additives on Uniaxial Tensile Behavior of Gellan Films. Journal of Polymers and the Environment, 2018, 26, 3034-3039. Studies on the sol-gel transition entropy of κ-carrageenan/water system. Colloid and Polymer Science,	1.0 1.0 2.6 5.0	2 1 4 2
11 12 13 14	Society of Materials Science, Japan, 2019, 68, 1-5. Rheological Properties of Concentrated Solutions ofÂa Branched Polysaccharide Dextran in an Ionic Liquid. Nihon Reoroji Gakkaishi, 2019, 47, 155-159. Modeling and Comparison with Experiment for Solvent Squeezing from Polymer Gels. Nihon Reoroji Gakkaishi, 2019, 47, 25-29. Volume phase transition of a polymer gel induced by phase separation of mixed solvents of water and 2â€butoxyethanol. Journal of Applied Polymer Science, 2018, 135, 46366. Effect of Saccharide and Alditol Additives on Uniaxial Tensile Behavior of Gellan Films. Journal of Polymers and the Environment, 2018, 26, 3034-3039. Studies on the sol-gel transition entropy of Î ^o -carrageenan/water system. Colloid and Polymer Science, 2018, 296, 233-237.	1.0 1.0 2.6 5.0	2 1 4 2

#	Article	IF	CITATIONS
19	Slipping in Stress Relaxation in Shear Estimated by Damping and Stress-Strain Behavior of Polyisobutylene. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 13-17.	0.2	0
20	Effects of Sugar on Sol-Gel Transition Entropy for Polysaccharide Gels Evaluated from a Clapeyron-type Equation. Nihon Reoroji Gakkaishi, 2016, 43, 169-173.	1.0	4
21	Plasticizing Effect of Saccharides on Uniaxial Tensile Behavior of κ-Carrageenan Films. Nihon Reoroji Gakkaishi, 2016, 45, 13-18.	1.0	5
22	Damping and Slipping Behavior of Highly Entangled Polyisobutylene. Nihon Reoroji Gakkaishi, 2016, 44, 61-63.	1.0	1
23	Anomaly in the coefficient of performance of the volume phase transition process of poly(N-isopropylacrylamide) gels induced by mechanical stress. Polymer Journal, 2016, 48, 741-744.	2.7	2
24	Rheological characterization of konjac glucomannan in concentrated solutions. Journal of Food Measurement and Characterization, 2016, 10, 220-225.	3.2	1
25	Rheological properties of concentrated solutions of gelatin in an ionic liquid 1-ethyl-3-methylimidazolium dimethyl phosphate. International Journal of Biological Macromolecules, 2016, 91, 789-793.	7.5	6
26	Coefficient of Performance for the Volume Phase Transition Process of Polymer Gels. Nihon Reoroji Gakkaishi, 2016, 43, 165-168.	1.0	2
27	Origin of Strong Damping for Highly-Entangled Polyisobutylene in Shear. Nihon Reoroji Gakkaishi, 2016, 43, 151-156.	1.0	1
28	A new method to estimate the sol–gel transition entropy in physically gelling systems. Polymer Journal, 2015, 47, 244-248.	2.7	13
29	Effects of side groups on the entanglement network of cellulosic polysaccharides. Cellulose, 2015, 22, 2305-2310.	4.9	8
30	Rheological properties of ionic liquid solutions of xanthan. Colloid and Polymer Science, 2015, 293, 2709-2712.	2.1	5
31	Damping Behavior of Highly Entangled High Density Polyethylene after Uniaxial Step Strains. Nihon Reoroji Gakkaishi, 2015, 43, 11-15.	1.0	4
32	Molecular weight between entanglements for \hat{l}^2 - and \hat{l}^1 -carrageenans in an ionic liquid. International Journal of Biological Macromolecules, 2014, 69, 416-419.	7.5	3
33	Some remarks on rheological properties of concentrated solutions of galactomannans. Food Hydrocolloids, 2013, 30, 130-133.	10.7	1
34	Entanglement network of chitin and chitosan in ionic liquid solutions. Journal of Applied Polymer Science, 2013, 130, 2439-2443.	2.6	23
35	Rheological properties of concentrated solutions of galactomannans in an ionic liquid. Carbohydrate Polymers, 2012, 89, 1018-1021.	10.2	12
36	Molecular weight between entanglements for linear d-glucans. Colloid and Polymer Science, 2012, 290, 1793-1797.	2.1	13

#	Article	IF	CITATIONS
37	Rheological properties of concentrated solutions of agarose in ionic liquid. Journal of Applied Polymer Science, 2012, 123, 3023-3027.	2.6	12
38	Entanglement network of agarose in various solvents. Polymer Journal, 2011, 43, 1000-1002.	2.7	11
39	Entanglement properties of cellulose and amylose in an ionic liquid. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 961-965.	2.1	33
40	Studies on Local Motion of Synthetic Polymers and Dynamics of Polysaccharides. Nihon Reoroji Gakkaishi, 2010, 37, 223-230.	1.0	0
41	Rheological properties of concentrated solutions of gellan in an ionic liquid. Carbohydrate Polymers, 2009, 78, 576-580.	10.2	20
42	Gelation of gellan gum aqueous solutions studied by polarization modulation spectroscopy. Biopolymers, 2004, 75, 376-383.	2.4	9
43	Local Chain Mobility of Gellan in Aqueous Systems Studied by Fluorescence Depolarization. Macromolecular Bioscience, 2004, 4, 714-720.	4.1	12
44	Effect of pH on the conformation of gellan chains in aqueous systems. Biophysical Chemistry, 2004, 111, 223-227.	2.8	54
45	In situ measurement of circular dichroism of DNA adsorbing onto a solid surface. Journal of Proteomics, 2004, 61, 349-357.	2.4	4
46	Local Chain Dynamics of Poly(N-vinylcarbazole) Studied by the Fluorescence Depolarization Method. Polymer Journal, 2001, 33, 464-468.	2.7	9
47	Dynamic fluorescence quenching precedent to thermally-induced phase separation of poly(ethoxyethyl vinyl ether) aqueous solution. Polymer Bulletin, 1999, 42, 85-91.	3.3	4
48	Molecular Weight Effect on Local Motion of Polystyrene Studied by the Fluorescence Depolarization Method. Polymer Journal, 1999, 31, 172-176.	2.7	8
49	Local motion of crosslinks for poly (methyl methacrylate) gels by the fluorescence depolarization method. Polymer Bulletin, 1997, 39, 109-116.	3.3	5
50	Local Chain Dynamics of Several Polymers in $\hat{\Gamma}$ Solvents Studied by the Fluorescence Depolarization Method. Nihon Reoroji Gakkaishi, 1997, 25, 203-205.	1.0	1