## Tsuyoshi Akiyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1947132/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Electrochemical fabrication of hierarchical thin films consisting of different polythiophenes and change in photoelectric conversion properties with film thickness. Japanese Journal of Applied Physics, 2022, 61, 061008.                      | 1.5 | 2         |
| 2  | Dye fluorescence enhancement by plasmonic nanostructured gold–titania film composites obtained<br>by the combination of electrodeposition and surface sol-gel process. Journal of Sol-Gel Science and<br>Technology, 2022, 104, 666-672.         | 2.4 | 2         |
| 3  | One-pot synthesis of visible-light-responsive titanium oxide photocatalyst with embedded silver nanoparticles. Journal of Sol-Gel Science and Technology, 2021, 98, 281-287.                                                                     | 2.4 | 1         |
| 4  | Preparation of silver-nanoparticle-loaded C60-ethylenediamine adduct microparticles and their application to photoelectric conversion. Applied Physics Express, 2021, 14, 067003.                                                                | 2.4 | 1         |
| 5  | Fabrication and surface-enhanced Raman scattering properties of thin-film assemblies of classified silver nanoparticles. Japanese Journal of Applied Physics, 2021, 60, 027002.                                                                  | 1.5 | 1         |
| 6  | Fabrication and photocatalytic behavior of titanium oxide–gold nanoparticles composite ultrathin<br>films prepared using surface sol–gel process. Journal of Sol-Gel Science and Technology, 2020, 93,<br>563-569.                               | 2.4 | 5         |
| 7  | Fabrication and surface-enhanced Raman scattering properties of two-dimensional gold and silver<br>nanoparticle mixed assemblies by liquid–liquid interfacial precipitation method. Applied Physics<br>Express, 2020, 13, 055001.                | 2.4 | 3         |
| 8  | Open-shell singlet diradicaloid difluoreno[4,3-b:3′,4′-d]furan and its radical cation and dianion.<br>Chemical Communications, 2020, 56, 5881-5884.                                                                                              | 4.1 | 14        |
| 9  | Fabrication and photovoltaic properties of an invert-type organic thin-film solar cells incorporation of phosphorescent material into electron transport layer. AlP Conference Proceedings, 2019, , .                                            | 0.4 | 0         |
| 10 | Insertion effect of spin-coated films of C60-ethylenediamine adduct on organic thin-film solar cells.<br>AIP Conference Proceedings, 2018, , .                                                                                                   | 0.4 | 3         |
| 11 | Precise Control of Localized Surface Plasmon Wavelengths Is Needed for Effective Enhancement of<br>Triplet–Triplet Annihilation-Based Upconversion Emission. ACS Photonics, 2018, 5, 5025-5037.                                                  | 6.6 | 20        |
| 12 | Time-dependent non-linear size change of C60-ethylenediamine adduct particles in formation process.<br>Journal of Nanoparticle Research, 2018, 20, 1.                                                                                            | 1.9 | 8         |
| 13 | Morphological change of crystalline polymer films by annealing: substrate―and<br>heating/coolingâ€ŧateâ€dependent surface roughness. Surface and Interface Analysis, 2017, 49, 577-583.                                                          | 1.8 | 4         |
| 14 | Cathode buffer composed of fullerene–ethylenediamine adduct for an organic solar cell. Japanese<br>Journal of Applied Physics, 2017, 56, 021601.                                                                                                 | 1.5 | 5         |
| 15 | Retardation of sol–gel titanium oxide with imprinted grating structure. Optical Engineering, 2017, 56, 017108.                                                                                                                                   | 1.0 | 1         |
| 16 | Doping effects of transition metal elements to titanium dioxide for perovskite solar cells. AIP<br>Conference Proceedings, 2017, , .                                                                                                             | 0.4 | 5         |
| 17 | Development of Plasmonic Cu <sub>2</sub> O/Cu Composite Arrays as Visible- and<br>Near-Infrared-Light-Driven Plasmonic Photocatalysts. Langmuir, 2017, 33, 5685-5695.                                                                            | 3.5 | 40        |
| 18 | Efficient Photocurrent Enhancement from Porphyrin Molecules on Plasmonic Copper Arrays:<br>Beneficial Utilization of Copper Nanoanntenae on Plasmonic Photoelectric Conversion Systems. ACS<br>Applied Materials & Interfaces, 2017, 9, 750-762. | 8.0 | 18        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer<br>layer by alternate immersion process. AIP Conference Proceedings, 2017, , .                                                                                 | 0.4 | 1         |
| 20 | Effect of gold nanoparticles in titanium oxide layer on the photovoltaic performance of inverted-type organic thin-film solar cells. Molecular Crystals and Liquid Crystals, 2017, 653, 50-56.                                                                       | 0.9 | 3         |
| 21 | Extraordinary enhancement of porphyrin photocurrent utilizing plasmonic silver arrays. Nanoscale, 2016, 8, 15467-15472.                                                                                                                                              | 5.6 | 8         |
| 22 | Low-temperature synthesis of titanium oxide/gold nanoparticle composite powders using a<br>combination of the sol–gel process and ultraviolet light irradiation. Journal of Sol-Gel Science and<br>Technology, 2016, 78, 692-697.                                    | 2.4 | 5         |
| 23 | Fabrication and Photocurrent Generation Properties of Insoluble Hierarchical Polythiophene Thin<br>Films Prepared by Sequential Electrochemical Polymerization. Bulletin of the Chemical Society of<br>Japan, 2016, 89, 700-704.                                     | 3.2 | 4         |
| 24 | Formation of Thin Films of Densely Packed [60]Fullerene–Diaminoethane Adduct Microparticles at a<br>Liquid/Liquid Interface and Their Photoelectrochemical Applications. Chemistry Letters, 2015, 44,<br>489-491.                                                    | 1.3 | 6         |
| 25 | Effect of Gold and Silver Nanoparticle in Poly(3,4-Ethylenedioxythiophene)-Poly(Styrene Sulfonate)<br>layer on Inverted-Type Organic Thin-Film Solar Cells. Transactions of the Materials Research Society<br>of Japan, 2015, 40, 331-334.                           | 0.2 | Ο         |
| 26 | Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged<br>two-dimensional assemblies of Au(core)–Ag(shell) nanospheres. Physical Chemistry Chemical Physics,<br>2015, 17, 21182-21189.                                     | 2.8 | 45        |
| 27 | Photocurrent enhancement of porphyrin molecules over a wide-wavelength region based on combined use of silver nanoprisms with different aspect ratios. Journal of Materials Chemistry C, 2015, 3, 11439-11448.                                                       | 5.5 | 16        |
| 28 | Fabrication and characterization of PCBM:P3HT:silicon phthalocyanine bulk heterojunction solar cells with inverted structures. Japanese Journal of Applied Physics, 2014, 53, 05FJ08.                                                                                | 1.5 | 11        |
| 29 | Selective implantation of gold nanoparticles onto the surface on one side of a self-standing polymer film. RSC Advances, 2014, 4, 62375-62379.                                                                                                                       | 3.6 | Ο         |
| 30 | Effect of annealing on photovoltaic properties and microstructure of conventional and inverted organic solar cells using active bilayer based on liquid-crystal semiconducting polymer and fullerene. International Journal of Energy Research, 2014, 38, 1541-1550. | 4.5 | 7         |
| 31 | Microstructures, optical and photoelectric conversion properties of spherical silicon solar cells with anti-reflection SnO <sub>x</sub> :F thin films. Japanese Journal of Applied Physics, 2014, 53, 05FJ03.                                                        | 1.5 | 18        |
| 32 | Effect of gold nanoparticle in holeâ€transport layer on inverted organic thinâ€film solar cell<br>performance. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1645-1650.                                                                   | 1.8 | 8         |
| 33 | C <sub>60</sub> –ethylenediamine adduct thin film as a buffer layer for inverted-type organic solar cells. RSC Advances, 2014, 4, 34950.                                                                                                                             | 3.6 | 10        |
| 34 | Effects of Au nanoparticle addition to hole transfer layer in organic solar cells based on copper<br>naphthalocyanine and fullerene. Progress in Natural Science: Materials International, 2014, 24, 179-183.                                                        | 4.4 | 4         |
| 35 | Facile Fabrication and Photovoltaic Application of [60]Fullerene Assembly Films Formed by Reaction between Fullerene and Amines. Bulletin of the Chemical Society of Japan, 2014, 87, 1335-1342.                                                                     | 3.2 | 11        |
| 36 | Fabrication and Characterization of TiO2/CH3NH3PbI3-based Photovoltaic Devices. Chemistry Letters, 2014, 43, 916-918.                                                                                                                                                | 1.3 | 37        |

| #  | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Fabrication and characterization of organic solar cells using titanylphthalocyanine as hole<br>transport layer. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2861-2864.                                                                   | 1.8  | 4         |
| 38 | Fabrication and characterization of fullerene-based solar cells containing phthalocyanine and naphthalocyanine dimers. Synthetic Metals, 2013, 177, 48-51.                                                                                                            | 3.9  | 18        |
| 39 | Fabrication and Characterization of ZnO/Cu <sub>2</sub> O Solar Cells Prepared by Electrodeposition.<br>Applied Physics Express, 2013, 6, 086503.                                                                                                                     | 2.4  | 57        |
| 40 | Metal-Enhanced Fluorescence Platforms Based on Plasmonic Ordered Copper Arrays: Wavelength<br>Dependence of Quenching and Enhancement Effects. ACS Nano, 2013, 7, 9997-10010.                                                                                         | 14.6 | 157       |
| 41 | Densely arranged two-dimensional silver nanoparticle assemblies with optical uniformity over vast<br>areas as excellent surface-enhanced Raman scattering substrates. Physical Chemistry Chemical<br>Physics, 2013, 15, 15802.                                        | 2.8  | 36        |
| 42 | Incorporation Effect of Silver Nanoparticles on Inverted Type Bulk-Heterojunction Organic Solar<br>Cells. Japanese Journal of Applied Physics, 2013, 52, 04CR13.                                                                                                      | 1.5  | 5         |
| 43 | Fabrication of C <sub>60</sub> assembly films via an fullerene-amine addition reaction by using stepwise immersion. Journal of Physics: Conference Series, 2013, 433, 012007.                                                                                         | 0.4  | 6         |
| 44 | Microstructures and Photovoltaic Properties of Polysilane-Based Solar Cells. Japanese Journal of<br>Applied Physics, 2013, 52, 04CR07.                                                                                                                                | 1.5  | 27        |
| 45 | Mixing Effect of Gold and Silver Nanoparticles on Enhancement in Performance of Organic Thin-Film<br>Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 122301.                                                                                              | 1.5  | 7         |
| 46 | Microstructures and photovoltaic properties of C <sub>60</sub> based solar cells with copper<br>oxides, CuInS <sub>2</sub> , phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton<br>diffusion blocking layers. Materials Technology, 2013, 28, 21-39. | 3.0  | 52        |
| 47 | Preparation and Photovoltaic Application of Fullerene–Porphyrin Composite Micropowder.<br>Chemistry Letters, 2013, 42, 694-696.                                                                                                                                       | 1.3  | 2         |
| 48 | Facile Solubilization and Photovoltaic Application of C60 Fullerene–Ethylenediamine Adduct.<br>Chemistry Letters, 2013, 42, 177-179.                                                                                                                                  | 1.3  | 10        |
| 49 | Photochemical half-cells using mixture films of fullerene-ethylenediamine adduct microparticles and polythiophene. Journal of Physics: Conference Series, 2013, 433, 012010.                                                                                          | 0.4  | 7         |
| 50 | Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)—silver(shell)<br>nanoparticles and their surface-enhanced Raman scattering properties. Photochemical and<br>Photobiological Sciences, 2013, 13, 82-91.                          | 2.9  | 8         |
| 51 | Tuning Optical Properties of Two-Dimensional Ordered Arrays of Silica/Gold and Silver Core/Shell<br>Structured Nanoparticles in Near-Infrared Region. Japanese Journal of Applied Physics, 2012, 51,<br>04DH04.                                                       | 1.5  | 1         |
| 52 | Effects of Film Thickness on the Photocurrent Generation from Polythiophene–Fullerene Thin Films<br>Containing Silver Nanoparticles. Japanese Journal of Applied Physics, 2012, 51, 02BK04.                                                                           | 1.5  | 8         |
| 53 | Organic Solar Cells Based on Electrodeposited Polyaniline Films. Japanese Journal of Applied Physics, 2012, 51, 04DK10.                                                                                                                                               | 1.5  | 2         |
| 54 | Photocurrent enhancement tuned with plasmonic resonance in self-assembled monolayers fabricated on regularly arrayed gold nanostructures. Photochemical and Photobiological Sciences, 2012, 11, 318-322.                                                              | 2.9  | 9         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Electropolymerized Polythiophene Photoelectrodes with Density-Controlled Gold Nanoparticles.<br>Langmuir, 2012, 28, 9155-9160.                                                                                   | 3.5 | 36        |
| 56 | Fabrication and characterization of tetracyanoquinodimethane/phthalocyanine solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 877-881.                 | 3.5 | 18        |
| 57 | Facile Fabrication and Raman Scattering Enhancement Properties of Mixed Gold and Silver<br>Nanoparticle Layers. E-Journal of Surface Science and Nanotechnology, 2012, 10, 157-160.                              | 0.4 | 7         |
| 58 | Fabrication and characterization of copper oxides/fullerene solar cells prepared by an electrodeposition method. Journal of the Ceramic Society of Japan, 2011, 119, 402-404.                                    | 1.1 | 4         |
| 59 | Structures and photovoltaic properties of copper oxides/fullerene solar cells. Journal of Physics and Chemistry of Solids, 2011, 72, 1206-1211.                                                                  | 4.0 | 62        |
| 60 | Effects of capping layers on the photoelectrochemical property of silver nanoparticle-modified<br>indium–tin-oxide electrode. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221,<br>239-243.    | 3.9 | 4         |
| 61 | Fabrication and Photocurrent Generation of Multilayer Assemblies Consisting of<br>Silver-nanoparticles, Polydiacetylene, and Polyions. Japanese Journal of Applied Physics, 2011, 50,<br>04DH15.                 | 1.5 | 0         |
| 62 | Silver-Nanoparticle-Assisted Photocurrent Generation in Polythiophene–Fullerene Thin Films.<br>Japanese Journal of Applied Physics, 2011, 50, 04DK22.                                                            | 1.5 | 7         |
| 63 | An Influence of Monomeric Porphyrin Structure on the Electropolymerized Photoactive Electrode for Polymer Solar Cells. Molecular Crystals and Liquid Crystals, 2011, 538, 10-14.                                 | 0.9 | 2         |
| 64 | Electrochemical Modulation of the Optical Property of Polythiophene-Gold Nanorod Composite<br>Films. Molecular Crystals and Liquid Crystals, 2011, 539, 1/[341]-4/[344].                                         | 0.9 | 1         |
| 65 | Effects of Hole Transport Layer on Photoelectrochemical Responses from Polythiophene–Porphyrin<br>Composite Polymer Electrode. Applied Physics Express, 2010, 3, 122301.                                         | 2.4 | 6         |
| 66 | Selective Formation and Structural Properties of Rhombic Dodecahedral [70]Fullerene<br>Microparticles Formed by Reaction with Aliphatic Diamines. Langmuir, 2010, 26, 4274-4280.                                 | 3.5 | 17        |
| 67 | A Z-scheme type photoelectrochemical cell consisting of porphyrin-containing polymer and dye-sensitized TiO2electrodes. Photochemical and Photobiological Sciences, 2010, 9, 1085-1087.                          | 2.9 | 11        |
| 68 | Enormous enhancement in photocurrent generation using electrochemically fabricated goldnanostructures. Chemical Communications, 2010, 46, 306-308.                                                               | 4.1 | 60        |
| 69 | Structural Characterization and Photoelectrochemical Properties of Gold Nanoparticle<br>Multistructures Prepared by Layer-by-Layer Deposition. Japanese Journal of Applied Physics, 2009, 48,<br>04C132.         | 1.5 | 13        |
| 70 | Facile Fabrication and Photocurrent Generation Properties of Electrochemically Polymerized<br>Fullerene–Poly(ethylene dioxythiophene) Composite Films. Japanese Journal of Applied Physics, 2009,<br>48, 04C172. | 1.5 | 13        |
| 71 | Effects of Silver Nanoparticles on Photoelectrochemical Responses of Organic Dyes. Journal of Physical Chemistry C, 2009, 113, 11830-11835.                                                                      | 3.1 | 68        |
| 72 | Photocurrent generation properties of electrochemically polymerized terthiophene-linked fullerene film. Synthetic Metals, 2009, 159, 965-968.                                                                    | 3.9 | 16        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Plasmon-Enhanced Photocurrent Generation from Self-Assembled Monolayers of Phthalocyanine by<br>Using Gold Nanoparticle Films. Langmuir, 2009, 25, 3887-3893.                                                                    | 3.5 | 56        |
| 74 | Enhanced Absorption and Emission in a Copper Phthalocyanine–Gold Nanoparticle System Assisted by<br>Localized Surface Plasmon. Chemistry Letters, 2009, 38, 326-327.                                                             | 1.3 | 23        |
| 75 | Preparation and characterization of porphyrin–polythiophene stacked films as prepared by electrochemical method under stirring condition. Thin Solid Films, 2008, 516, 2502-2506.                                                | 1.8 | 12        |
| 76 | Step-by-Step Fabrication of Porphyrinâ^'Fullerene Supramolecular Assemblies and Their<br>Photoelectrochemical Properties. Journal of Physical Chemistry C, 2008, 112, 7015-7020.                                                 | 3.1 | 20        |
| 77 | Fabrication of Densely Packed Gold Nanoparticle Films and Their Fluorescence Enhancement Effect.<br>Japanese Journal of Applied Physics, 2008, 47, 3063.                                                                         | 1.5 | 19        |
| 78 | Shape Control of Fullerene Microparticles by Using Ethylenediamine. Chemistry Letters, 2008, 37,<br>932-933.                                                                                                                     | 1.3 | 19        |
| 79 | Enhanced Photocurrent Generation in Selfâ€Assembled Monolayers Formed at Plasmonic Gold<br>Nanostructures. Macromolecular Symposia, 2008, 270, 171-176.                                                                          | 0.7 | 4         |
| 80 | Characterization of Copper Phthalocyanine Nanoparticles Formed by Laser Ablation in Poor Solvents.<br>E-Journal of Surface Science and Nanotechnology, 2008, 6, 312-316.                                                         | 0.4 | 1         |
| 81 | Facile Fabrication of Gold Nanoparticle–Titanium Oxide Alternate Assemblies by Surface Sol–Gel<br>Process. Japanese Journal of Applied Physics, 2007, 46, 2490-2492.                                                             | 1.5 | 8         |
| 82 | Characterization and Evaluation of Role of Porphyrin Moiety<br>inmeso-Tetrathienylporphyrin–Polythiophene Composite Film. Japanese Journal of Applied Physics,<br>2007, 46, 2632-2635.                                           | 1.5 | 13        |
| 83 | Fabrication of a Novel Photoelectric Conversion Device Consisting of a Poly-3-dodecylthiophene Film<br>and C60Fullerene–Ethylenediamine Nanoparticles. Chemistry Letters, 2007, 36, 934-935.                                     | 1.3 | 15        |
| 84 | Photocurrent enhancement in a porphyrin-gold nanoparticle nanostructure assisted by localized plasmon excitation. Chemical Communications, 2006, , 395-397.                                                                      | 4.1 | 91        |
| 85 | Solar cells using iodine-doped polythiophene–porphyrin polymer films. Solar Energy Materials and<br>Solar Cells, 2006, 90, 1322-1330.                                                                                            | 6.2 | 65        |
| 86 | Molecular logic devices using mixed self-assembled monolayers. Thin Solid Films, 2006, 499, 354-358.                                                                                                                             | 1.8 | 40        |
| 87 | Facile Fabrication and Photolectrochemical Properties of Porphyrin–Fullerene Assemblies by<br>Self-Assembly and Surface Sol–Gel Processes. Japanese Journal of Applied Physics, 2006, 45, 3758-3761.                             | 1.5 | 9         |
| 88 | Structural Characterization and Photocurrent Properties<br>ofcis-di(thiocyanato)-bis(4,4'-dicarboxy-2,2'-bipyridine) Ruthenium(II) Monolayers on the Gold Surfaces.<br>Japanese Journal of Applied Physics, 2005, 44, 2795-2798. | 1.5 | 16        |
| 89 | A Photoelectronic Switching Device Using a Mixed Self-Assembled Monolayer. Journal of Physical Chemistry B, 2005, 109, 3944-3948.                                                                                                | 2.6 | 45        |
| 90 | Facile Fabrication of Morphology-Controlled Gold Nanoparticle Architectures by Electrolyte-Induced Agglomeration and Their Photoelectrochemical Applications. Langmuir, 2005, 21, 793-796.                                       | 3.5 | 15        |

| #   | Article                                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Solid-State Solar Cells Consisting of Polythiophene-Porphyrin Composite Films. Japanese Journal of<br>Applied Physics, 2005, 44, 2799-2802.                                                                                                                                                                              | 1.5  | 19        |
| 92  | Fabrication of a Photoelectrochemical Cell Using a Self-Assembled Monolayer of<br>Tris(2,2'-bipyrisine)ruthenium(II)-Viologen Linked Thiol on Multistructured Gold Nanoparticles.<br>Japanese Journal of Applied Physics, 2004, 43, 2372-2375.                                                                           | 1.5  | 10        |
| 93  | Fabrication and Photoelectrochemical Properties of Polythiophene-Porphyrin Composite Films.<br>Japanese Journal of Applied Physics, 2004, 43, 2306-2310.                                                                                                                                                                 | 1.5  | 15        |
| 94  | Bi-directional photocurrent generation dependent on the wavelength of irradiation of a mixed monolayer assembly. Photochemical and Photobiological Sciences, 2004, 3, 26.                                                                                                                                                | 2.9  | 13        |
| 95  | Gold nanoparticle–porphyrin self-assembled multistructures for photoelectric conversion. Thin<br>Solid Films, 2003, 438-439, 70-74.                                                                                                                                                                                      | 1.8  | 25        |
| 96  | Fabrication and photoelectrochemical properties of electron donor–acceptor assemblies via titanium oxide interlayers. Thin Solid Films, 2003, 438-439, 230-234.                                                                                                                                                          | 1.8  | 10        |
| 97  | Particle-size effects on the photocurrent efficiency of nanostructured assemblies consisting of gold nanoparticles and a ruthenium complex–viologen linked thiol. Journal of Electroanalytical Chemistry, 2003, 550-551, 303-307.                                                                                        | 3.8  | 28        |
| 98  | A double-driven photoelectrochemical cell. Synthetic Metals, 2003, 139, 511-514.                                                                                                                                                                                                                                         | 3.9  | 9         |
| 99  | Novel Photoelectrochemical Cell Using a Self-Assembled Monolayer of a Ruthenium (II)<br>Tris(2,2'-bipyridine) Thiol Derivative. Japanese Journal of Applied Physics, 2002, 41, 4737-4738.                                                                                                                                | 1.5  | 13        |
| 100 | Structural Characterization and Photoelectrochemical Properties of the Self-Assembled Monolayers<br>of Tris(2,2â€~-bipyridine)ruthenium(II)â~'Viologen Linked Compounds Formed on the Gold Surface.<br>Langmuir, 2002, 18, 8666-8671.                                                                                    | 3.5  | 49        |
| 101 | Efficient Photocurrent Generation in Novel Self-Assembled Multilayers Comprised of<br>[60]Fullereneâ``Cationic Homooxacalix[3]arene Inclusion Complex and Anionic Porphyrin Polymer.<br>Journal of the American Chemical Society, 2001, 123, 4855-4856.                                                                  | 13.7 | 182       |
| 102 | Facile Fabrication of Photoelectrochemical Assemblies Consisting of Gold Nanoparticles and a<br>Tris(2,2â€~-bipyridine)ruthenium(II)â^'Viologen Linked Thiol. Langmuir, 2001, 17, 5714-5716.                                                                                                                             | 3.5  | 76        |
| 103 | Construction of gold nanoparticle-ruthenium (II) tris(2,2′-bipyridine) self-assembled multistructures and their photocurrent responses. Thin Solid Films, 2001, 393, 273-277.                                                                                                                                            | 1.8  | 34        |
| 104 | Preparation and Photoelectrochemical Properties of a Self-Assembled Monolayer of a Ruthenium<br>Tris(2,2′-bipyridine)-viologen 1:2 Linked Compound. Chemistry Letters, 2000, 29, 668-669.                                                                                                                                | 1.3  | 11        |
| 105 | Fabrication of porphyrin–titanium oxide–fullerene assemblies on an ITO electrode and their<br>photocurrent responses. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169,<br>137-141.                                                                                                           | 4.7  | 32        |
| 106 | Effects of spacer-chain length on the photoelectrochemical responses of monolayer assemblies with ruthenium tris(2,2′-bipyridine) - viologen linked disulfides. Thin Solid Films, 1999, 350, 223-227.                                                                                                                    | 1.8  | 21        |
| 107 | Organic Photoelectrochemical Cell Mimicking Photoinduced Multistep Electron Transfer in<br>Photosynthesis: Interfacial Structure and Photoelectrochemical Properties of Self-Assembled<br>Monolayers of Porphyrin-Linked Fullerenes on Gold Electrodes. Bulletin of the Chemical Society of<br>Iapan, 1999, 72, 485-502. | 3.2  | 97        |
| 108 | Control of electron transfer and its utilization. Pure and Applied Chemistry, 1997, 69, 1951-1956.                                                                                                                                                                                                                       | 1.9  | 66        |

| #   | Article                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C60Dyads.<br>Journal of the American Chemical Society, 1996, 118, 11771-11782. | 13.7 | 389       |
| 110 | Synthesis and Self-Assembly of Porphyrin-linked Fullerene on Gold Surface Using S-Au Linkage.<br>Chemistry Letters, 1996, 25, 907-908.                           | 1.3  | 73        |
| 111 | Synthesis and Photophysical Property of Porphyrin-Linked Fullerene. Chemistry Letters, 1995, 24, 265-266.                                                        | 1.3  | 99        |
| 112 | Preparation of Molecular Assemblies of Porphyrin-Linked Alkanethiol on Gold Surface and Their<br>Redox Properties. Chemistry Letters, 1994, 23, 1447-1450.       | 1.3  | 36        |