Robert B Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/194628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical <i>In Vivo</i> Validation of the RAD51 Test for Identification of Homologous Recombination-Deficient Tumors and Patient Stratification. Cancer Research, 2022, 82, 1646-1657.	0.9	40
2	Experimental models of endocrine responsive breast cancer: strengths, limitations, and use. , 2021, 4, 762-783.		8
3	Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors. Nature Communications, 2021, 12, 1502.	12.8	34
4	FAK inhibition alone or in combination with adjuvant therapies reduces cancer stem cell activity. Npj Breast Cancer, 2021, 7, 65.	5.2	17
5	Reciprocal priming between receptor tyrosine kinases at recycling endosomes orchestrates cellular signalling outputs. EMBO Journal, 2021, 40, e107182.	7.8	12
6	Increased Expression of Interleukin-1 Receptor Characterizes Anti-estrogen-Resistant ALDH+ Breast Cancer Stem Cells. Stem Cell Reports, 2020, 15, 307-316.	4.8	24
7	Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer. Oncogene, 2020, 39, 4896-4908.	5.9	27
8	Tailored Functionalized Magnetic Nanoparticles to Target Breast Cancer Cells Including Cancer Stem-Like Cells. Cancers, 2020, 12, 1397.	3.7	13
9	Preparation of a User-Defined Peptide Gel for Controlled 3D Culture Models of Cancer and Disease. Journal of Visualized Experiments, 2020, , .	0.3	4
10	Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nature Communications, 2019, 10, 5016.	12.8	105
11	The Milk Protein Alpha-Casein Suppresses Triple Negative Breast Cancer Stem Cell Activity Via STAT and HIF-1alpha Signalling Pathways in Breast Cancer Cells and Fibroblasts. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 245-256.	2.7	7
12	PAK4 regulates stemness and progression in endocrine resistant ER-positive metastatic breast cancer. Cancer Letters, 2019, 458, 66-75.	7.2	18
13	Targeting Endometrial Cancer Stem Cell Activity with Metformin Is Inhibited by Patient-Derived Adipocyte-Secreted Factors. Cancers, 2019, 11, 653.	3.7	27
14	FKBPL and its peptide derivatives inhibit endocrine therapy resistant cancer stem cells and breast cancer metastasis by downregulating DLL4 and Notch4. BMC Cancer, 2019, 19, 351.	2.6	45
15	The Notch Pathway Promotes Osteosarcoma Progression through Activation of Ephrin Reverse Signaling. Molecular Cancer Research, 2019, 17, 2383-2394.	3.4	27
16	Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts. Breast Cancer Research, 2019, 21, 130.	5.0	32
17	Estrogen-Induced Apoptosis in Breast Cancers Is Phenocopied by Blocking Dephosphorylation of Eukaryotic Initiation Factor 2 Alpha (eIF2α) Protein. Molecular Cancer Research, 2019, 17, 918-928.	3.4	15
18	Systems biology: perspectives on multiscale modeling in research on endocrine-related cancers. Endocrine-Related Cancer, 2019, 26, R345-R368.	3.1	14

#	Article	IF	CITATIONS
19	Ethnicity influences breast cancer stem cells' drug resistance. Breast Journal, 2018, 24, 701-703.	1.0	1
20	Estrogenicity of essential oils is not required to relieve symptoms of urogenital atrophy in breast cancer survivors. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591876618.	3.2	6
21	Acquired Resistance of ER-Positive Breast Cancer to Endocrine Treatment Confers an Adaptive Sensitivity to TRAIL through Posttranslational Downregulation of c-FLIP. Clinical Cancer Research, 2018, 24, 2452-2463.	7.0	32
22	The Role of Steroid Hormones in Breast and Effects on Cancer Stem Cells. Current Stem Cell Reports, 2018, 4, 81-94.	1.6	29
23	Abstract 985: The EurOPDX EDIReX project: Towards a European research infrastructure on patient-derived cancer models. , 2018, , .		0
24	Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer, 2017, 17, 254-268.	28.4	527
25	G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts. International Journal of Molecular Sciences, 2017, 18, 2713.	4.1	27
26	GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment. Breast Cancer Research, 2017, 19, 129.	5.0	59
27	Tissue Factor promotes breast cancer stem cell activity <i>in vitro</i> . Oncotarget, 2017, 8, 25915-25927.	1.8	16
28	A Role for Notch Signalling in Breast Cancer and Endocrine Resistance. Stem Cells International, 2016, 2016, 1-6.	2.5	50
29	Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer and Metastasis Reviews, 2016, 35, 547-573.	5.9	189
30	Patient-derived Mammosphere and Xenograft Tumour Initiation Correlates with Progression to Metastasis. Journal of Mammary Gland Biology and Neoplasia, 2016, 21, 99-109.	2.7	40
31	SPRY1 regulates mammary epithelial morphogenesis by modulating EGFR-dependent stromal paracrine signaling and ECM remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5731-40.	7.1	41
32	Intermittent energy restriction induces changes in breast gene expression and systemic metabolism. Breast Cancer Research, 2016, 18, 57.	5.0	37
33	Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27, 065103.	2.6	100
34	Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget, 2016, 7, 1262-1275.	1.8	74
35	An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation. Oncotarget, 2016, 7, 2596-2610.	1.8	52
36	Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling. Oncotarget, 2016, 7, 33055-33068.	1.8	60

#	Article	IF	CITATIONS
37	The seventh ENBDC workshop on methods in mammary gland development and cancer. Breast Cancer Research, 2015, 17, 119.	5.0	0
38	Application of Metabolomics in Drug Resistant Breast Cancer Research. Metabolites, 2015, 5, 100-118.	2.9	50
39	Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Oncotarget, 2015, 6, 14005-14025.	1.8	103
40	The role of steroid hormones in breast cancer stem cells. Endocrine-Related Cancer, 2015, 22, T177-T186.	3.1	35
41	Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity. Cell Reports, 2015, 12, 1968-1977.	6.4	164
42	Endocrine resistance in breast cancer – An overview and update. Molecular and Cellular Endocrinology, 2015, 418, 220-234.	3.2	280
43	NF-κB Signaling Is Required for XBP1 (Unspliced and Spliced)-Mediated Effects on Antiestrogen Responsiveness and Cell Fate Decisions in Breast Cancer. Molecular and Cellular Biology, 2015, 35, 379-390.	2.3	80
44	Focal Adhesion Kinase and Wnt Signaling Regulate Human Ductal Carcinoma In Situ Stem Cell Activity and Response to Radiotherapy. Stem Cells, 2015, 33, 327-341.	3.2	55
45	Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells. Oncotarget, 2015, 6, 21892-21905.	1.8	41
46	A new class of small molecule estrogen receptor-alpha antagonists that overcome anti-estrogen resistance. Oncotarget, 2015, 6, 40388-40404.	1.8	4
47	Lapatinib inhibits stem/progenitor proliferation in preclinical in vitro models of ductal carcinoma in situ (DCIS). Cell Cycle, 2014, 13, 418-425.	2.6	18
48	Patient-Derived Xenograft Models: An Emerging Platform for Translational Cancer Research. Cancer Discovery, 2014, 4, 998-1013.	9.4	1,341
49	Risk determination and prevention of breast cancer. Breast Cancer Research, 2014, 16, 446.	5.0	248
50	Knockdown of estrogen receptorâ€Î± induces autophagy and inhibits antiestrogenâ€mediated unfolded protein response activation, promoting ROSâ€induced breast cancer cell death. FASEB Journal, 2014, 28, 3891-3905.	0.5	78
51	A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity. Oncotarget, 2014, 5, 599-612.	1.8	53
52	P-cadherin signals through the laminin receptor α6β4 integrin to induce stem cell and invasive properties in basal-like breast cancer cells. Oncotarget, 2014, 5, 679-692.	1.8	49
53	Co-ordination of cell cycle, migration and stem cell-like activity in breast cancer. Oncotarget, 2014, 5, 7833-7842.	1.8	15
54	Oestrogen increases the activity of oestrogen receptor negative breast cancer stem cells through paracrine EGFR and Notch signalling. Breast Cancer Research, 2013, 15, R21.	5.0	82

#	Article	IF	CITATIONS
55	Targeting Treatment-Resistant Breast Cancer Stem Cells with FKBPL and Its Peptide Derivative, AD-01, via the CD44 Pathway. Clinical Cancer Research, 2013, 19, 3881-3893.	7.0	63
56	Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 2013, 15, R92.	5.0	320
57	Targeting IL-8 signalling to inhibit breast cancer stem cell activity. Expert Opinion on Therapeutic Targets, 2013, 17, 1235-1241.	3.4	34
58	Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Research, 2013, 15, 210.	5.0	203
59	Contrasting Hypoxic Effects on Breast Cancer Stem Cell Hierarchy Is Dependent on ER-α Status. Cancer Research, 2013, 73, 1420-1433.	0.9	56
60	Targeting CXCR1/2 Significantly Reduces Breast Cancer Stem Cell Activity and Increases the Efficacy of Inhibiting HER2 via HER2-Dependent and -Independent Mechanisms. Clinical Cancer Research, 2013, 19, 643-656.	7.0	184
61	Combining Notch inhibition with current therapies for breast cancer treatment. Therapeutic Advances in Medical Oncology, 2013, 5, 17-24.	3.2	21
62	Cell cycle regulators cyclin D1 and CDK4/6 have estrogen receptor-dependent divergent functions in breast cancer migration and stem cell-like activity. Cell Cycle, 2013, 12, 2384-2394.	2.6	67
63	Combined Inhibition of ErbB1/2 and Notch Receptors Effectively Targets Breast Ductal Carcinoma In Situ (DCIS) Stem/Progenitor Cell Activity Regardless of ErbB2 Status. PLoS ONE, 2013, 8, e56840.	2.5	37
64	Wnt Pathway Activity in Breast Cancer Sub-Types and Stem-Like Cells. PLoS ONE, 2013, 8, e67811.	2.5	126
65	Enrichment of human osteosarcoma stem cells based on hTERT transcriptional activity. Oncotarget, 2013, 4, 2326-2338.	1.8	33
66	Abstract B049: An integrated approach to study miRNA involvement in anti-endocrine resistance in breast cancer. , 2013, , .		0
67	Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines. International Journal of Breast Cancer, 2012, 2012, 1-11.	1.2	7
68	Stem cells in breast tumours: Are they ready for the clinic?. European Journal of Cancer, 2012, 48, 2104-2116.	2.8	75
69	P adherin Is Coexpressed with CD44 and CD49f and Mediates Stem Cell Properties in Basalâ€like Breast Cancer. Stem Cells, 2012, 30, 854-864.	3.2	64
70	Endoplasmic Reticulum Stress, the Unfolded Protein Response, Autophagy, and the Integrated Regulation of Breast Cancer Cell Fate. Cancer Research, 2012, 72, 1321-1331.	0.9	183
71	A Detailed Mammosphere Assay Protocol for the Quantification of Breast Stem Cell Activity. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 111-117.	2.7	299
72	Lack of caveolin-1 (P132L) somatic mutations in breast cancer. Breast Cancer Research and Treatment, 2012, 132, 1185-1186.	2.5	7

#	Article	IF	CITATIONS
73	Hormones and cancer: update from Tokyo 2010. Expert Review of Endocrinology and Metabolism, 2011, 6, 31-33.	2.4	0
74	Dickkopf1 Regulates Fate Decision and Drives Breast Cancer Stem Cells to Differentiation: An Experimentally Supported Mathematical Model. PLoS ONE, 2011, 6, e24225.	2.5	28
75	Comprehensive CYP2D6 genotype and adherence affect outcome in breast cancer patients treated with tamoxifen monotherapy. Breast Cancer Research and Treatment, 2011, 125, 279-287.	2.5	80
76	Breast Cancer Stem Cells and Their Role in Resistance to Endocrine Therapy. Hormones and Cancer, 2011, 2, 91-103.	4.9	54
77	Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Hormone Molecular Biology and Clinical Investigation, 2011, 5, 35-44.	0.7	49
78	Disruption of a Quorum Sensing mechanism triggers tumorigenesis: a simple discrete model corroborated by experiments in mammary cancer stem cells. Biology Direct, 2010, 5, 20.	4.6	36
79	Regulation of Breast Cancer Stem Cell Activity by Signaling through the Notch4 Receptor. Cancer Research, 2010, 70, 709-718.	0.9	468
80	The Embryonic Transcription Cofactor LBH Is a Direct Target of the Wnt Signaling Pathway in Epithelial Development and in Aggressive Basal Subtype Breast Cancers. Molecular and Cellular Biology, 2010, 30, 4267-4279.	2.3	82
81	Breast Cancer Stem Cells: Something Out of Notching?. Cancer Research, 2010, 70, 8973-8976.	0.9	74
82	A Systems Biology Approach to Identify Affected Regulatory and Signaling Circuits in Protein Interaction Networks. , 2009, , .		0
83	Normal Breast Tissue Implanted into Athymic Nude Mice Identifies Biomarkers of the Effects of Human Pregnancy Levels of Estrogen. Cancer Prevention Research, 2009, 2, 257-264.	1.5	8
84	Biomarkers of Dietary Energy Restriction in Women at Increased Risk of Breast Cancer. Cancer Prevention Research, 2009, 2, 720-731.	1.5	41
85	Resistance to Endocrine Therapy: Are Breast Cancer Stem Cells the Culprits?. Journal of Mammary Gland Biology and Neoplasia, 2009, 14, 45-54.	2.7	54
86	Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2009, 114, 8-20.	2.5	73
87	Are Stem-Like Cells Responsible for Resistance to Therapy in Breast Cancer?. , 2009, , 97-110.		1
88	Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Research, 2009, 11, R41.	5.0	72
89	The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets – improving meta-analysis and prediction of prognosis. BMC Medical Genomics, 2008, 1, 42.	1.5	134
90	Tumourâ€promoting activity of altered WWP1 expression in breast cancer and its utility as a prognostic indicator. Journal of Pathology, 2008, 216, 93-102.	4.5	35

#	Article	IF	CITATIONS
91	The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nature Reviews Cancer, 2008, 8, 37-49.	28.4	483
92	Prolactin receptor antagonism reduces the clonogenic capacity of breast cancer cells and potentiates doxorubicin and paclitaxel cytotoxicity. Breast Cancer Research, 2008, 10, R68.	5.0	55
93	Identification and functional analysis of SKA2 interaction with the glucocorticoid receptor. Journal of Endocrinology, 2008, 198, 499-509.	2.6	71
94	Are Stem-Like Cells Responsible for Resistance to Therapy in Breast Cancer?. Breast Disease, 2008, 29, 83-89.	0.8	11
95	Response and Resistance to the Endocrine Prevention of Breast Cancer. Advances in Experimental Medicine and Biology, 2008, 617, 201-211.	1.6	10
96	The Origin of Estrogen Receptor α-Positive and α-Negative Breast Cancer. Advances in Experimental Medicine and Biology, 2008, 617, 79-86.	1.6	1
97	Steroid Receptors, Stem Cells and Proliferation in the Human Breast. , 2008, , 111-121.		0
98	Annotating breast cancer microarray samples using ontologies. AMIA Annual Symposium proceedings, 2008, , 414-8.	0.2	0
99	Biomarker identification by knowledge-driven multi-scale independent component analysis. , 2007, , .		0
100	Novel Cell Culture Technique for Primary Ductal Carcinoma In Situ: Role of Notch and Epidermal Growth Factor Receptor Signaling Pathways. Journal of the National Cancer Institute, 2007, 99, 616-627.	6.3	288
101	Biomarker Identification by Knowledge-Driven Multi-Level ICA and Motif Analysis. , 2007, , .		5
102	Origins of breast cancer subtypes and therapeutic implications. Nature Clinical Practice Oncology, 2007, 4, 516-525.	4.3	155
103	TPD52 and NFKB1 gene expression levels correlate with G2 chromosomal radiosensitivity in lymphocytes of women with and at risk of hereditary breast cancer. International Journal of Radiation Biology, 2007, 83, 409-420.	1.8	12
104	Cyclin-dependent kinase inhibitors and basement membrane interact to regulate breast epithelial cell differentiation and acinar morphogenesis. Cell Proliferation, 2007, 40, 721-740.	5.3	11
105	Mammary Stem Cells and Breast Cancer—Role of Notch Signalling. Stem Cell Reviews and Reports, 2007, 3, 169-175.	5.6	342
106	Estrogen Deprivation for Breast Cancer Prevention. Recent Results in Cancer Research, 2007, 174, 151-167.	1.8	7
107	Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo. Breast Cancer Research, 2006, 8, R21.	5.0	25
108	High-throughput genomic technology in research and clinical management of breast cancer. Exploiting the potential of gene expression profiling: is it ready for the clinic?. Breast Cancer Research, 2006, 8, 214.	5.0	28

#	Article	IF	CITATIONS
109	Ovarian steroids and the human breast: Regulation of stem cells and cell proliferation. Maturitas, 2006, 54, 327-334.	2.4	46
110	Aberrant Activation of Notch Signaling in Human Breast Cancer. Cancer Research, 2006, 66, 1517-1525.	0.9	515
111	Review of: Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. Breast Cancer Online: BCO, 2006, 9, 1-3.	0.1	Ο
112	Human breast epithelial stem cells and their regulation. Journal of Pathology, 2006, 208, 7-16.	4.5	46
113	Regulation of the nuclear localization of the human Nedd4-related WWP1 protein by Notch. Molecular Membrane Biology, 2006, 23, 269-276.	2.0	20
114	Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocrine-Related Cancer, 2006, 13, 617-628.	3.1	69
115	Effects of oestrogens and anti-oestrogens on normal breast tissue from women bearing BRCA1 and BRCA2 mutations. British Journal of Cancer, 2006, 94, 1021-1028.	6.4	24
116	Activated c-SRC in ductal carcinoma in situ correlates with high tumour grade, high proliferation and HER2 positivity. British Journal of Cancer, 2006, 95, 1410-1414.	6.4	66
117	Isolation and characterization of human mammary stem cells. Cell Proliferation, 2005, 38, 375-386.	5.3	67
118	Stem Cells and Tissue Homeostasis in Mammary Glands. Journal of Mammary Gland Biology and Neoplasia, 2005, 10, 1-3.	2.7	5
119	The Mammary Gland "Side Population†A Putative Stem/Progenitor Cell Marker?. Journal of Mammary Gland Biology and Neoplasia, 2005, 10, 37-47.	2.7	101
120	Antiestrogens, Aromatase Inhibitors, and Apoptosis in Breast Cancer. Vitamins and Hormones, 2005, 71, 201-237.	1.7	75
121	A putative human breast stem cell population is enriched for steroid receptor-positive cells. Developmental Biology, 2005, 277, 443-456.	2.0	312
122	Mechanisms of Disease: prediction and prevention of breast cancer—cellular and molecular interactions. Nature Clinical Practice Oncology, 2005, 2, 635-646.	4.3	29
123	The Centrosomal Kinase Nek2 Displays Elevated Levels of Protein Expression in Human Breast Cancer. Cancer Research, 2004, 64, 7370-7376.	0.9	167
124	Human breast cell proliferation and its relationship to steroid receptor expression. Climacteric, 2004, 7, 129-137.	2.4	42
125	Steroid Receptors and Cell Cycle in Normal Mammary Epithelium. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 3-13.	2.7	129
126	Do early premalignant changes in normal breast epithelial cells predict cancer development?. Breast Cancer Research, 2004, 7, 18-20.	5.0	2

#	Article	IF	CITATIONS
127	Complementary yet distinct roles for oestrogen receptor-α and oestrogen receptor-β in mouse mammary epithelial proliferation. Breast Cancer Research, 2004, 6, 135-6.	5.0	2
128	Steroid receptors in human breast cancer. Trends in Endocrinology and Metabolism, 2004, 15, 316-323.	7.1	73
129	Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation, 2003, 71, 28-41.	1.9	442
130	Regulation of human breast epithelial stem cells. Cell Proliferation, 2003, 36, 45-58.	5.3	109
131	Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene, 2003, 22, 7316-7339.	5.9	421
132	Steroid receptors and proliferation in the human breast. Steroids, 2003, 68, 789-794.	1.8	71
133	p27KIP1phosphorylation by PKB/Akt leads to poor breast cancer prognosis. Breast Cancer Research, 2003, 5, 162-3.	5.0	36
134	Mutations in DNA damage response genes and breast cancer susceptibility. Breast Cancer Research, 2002, 4, 1.	5.0	3
135	Do estrogens always increase breast cancer risk?. Journal of Steroid Biochemistry and Molecular Biology, 2002, 80, 163-174.	2.5	51
136	New cancer biomarkers deriving from the Early Detection Research Network of NCI/USA. European Journal of Cancer, 2002, 38, S13.	2.8	1
137	Control of Proliferation in the Normal and Neoplastic Breast. , 2002, , 73-91.		Ο
138	Where do selective estrogen receptor modulators (SERMs) and aromatase inhibitors (Als) now fit into breast cancer treatment algorithms?. Journal of Steroid Biochemistry and Molecular Biology, 2001, 79, 227-237.	2.5	27
139	Introduction and overview: sex steroids in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 2000, 5, 245-250.	2.7	13
140	Abnormal regulation of the oestrogen receptor in benign breast lesions. Journal of Clinical Pathology, 2000, 53, 778-783.	2.0	61
141	Estrogen Receptor in Mammary Gland Physiology. , 2000, , 1-16.		1
142	Epithelial stem cells in the mammary gland: casting light into dark corners. Breast Cancer Research, 1999, 1, 11-3.	5.0	5
143	Estrogen Receptor-Positive Proliferating Cells in the Normal and Precancerous Breast. American Journal of Pathology, 1999, 155, 1811-1815.	3.8	247
144	Estrogen responsiveness and control of normal human breast proliferation. Journal of Mammary Gland Biology and Neoplasia, 1998, 3, 23-35.	2.7	157

#	Article	IF	CITATIONS
145	Oestrogens, Beatson and endocrine therapy. Endocrine-Related Cancer, 1997, 4, 371-380.	3.1	15
146	Type I insulin-like growth factor receptor gene expression in normal human breast tissue treated with oestrogen and progesterone. British Journal of Cancer, 1997, 75, 251-257.	6.4	89
147	Changes in the normal human breast throughout the menstrual cycle: relevance to breast carcinogenesis. Endocrine-Related Cancer, 1997, 4, 23-33.	3.1	18
148	Estrogen sensitivity of normal human breast tissue in vivo and implanted into athymic nude mice: Analysis of the relationship between estrogen-induced proliferation and progesterone receptor expression. Breast Cancer Research and Treatment, 1997, 45, 121-133.	2.5	235
149	Animal models of breast cancer: experimental design and their use in nutrition and psychosocial research. Breast Cancer Research and Treatment, 1997, 46, 117-133.	2.5	22
150	Issues in experimental design and endpoint analysis in the study of experimental cytotoxic agents in vivo in breast cancer and other models. Breast Cancer Research and Treatment, 1997, 46, 255-278.	2.5	52
151	Induction of apoptosis by tamoxifen and ICI 182780 in primary breast cancer. , 1997, 72, 608-613.		104
152	Animal models of breast cancer: Their diversity and role in biomedical research. Breast Cancer Research and Treatment, 1996, 39, 1-6.	2.5	55
153	Human breast cancer cell line xenografts as models of breast cancer — The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Research and Treatment, 1996, 39, 69-86.	2.5	114
154	Effects of short-term antiestrogen treatment of primary breast cancer on estrogen receptor mRNA and protein expression and on estrogen-regulated genes. Breast Cancer Research and Treatment, 1996, 41, 31-41.	2.5	42
155	Experiments on proliferation of normal human breast tissue in nude mice do not show that progesterone does not stimulate breast cells. Endocrinology, 1996, 137, 1505-1506.	2.8	1
156	Hormone dependence of breast cancer cells and the effects of tamoxifen and estrogen:31P NMR studies. Breast Cancer Research and Treatment, 1995, 33, 209-217.	2.5	16
157	Effect of tamoxifen on Ki67 labelling index in human breast tumours and its relationship to oestrogen and progesterone receptor status. British Journal of Cancer, 1993, 67, 606-611.	6.4	100
158	The Biology of Breast Tumor Progression: Acquisition of hormone independence and resistance to cytotoxic drugs. Acta Oncológica, 1992, 31, 115-123.	1.8	31
159	Reduction in apoptosis relative to mitosis in histologically normal epithelium accompanies fibrocystic change and carcinoma of the premenopausal human breast. Journal of Pathology, 1992, 167, 25-32.	4.5	120
160	In vitro antineoplastic activity of C7-substituted mitomycin C analogues MC-77 and MC-62 against human breast-cancer cell lines. Cancer Chemotherapy and Pharmacology, 1992, 29, 290-296.	2.3	10
161	Hormonal aspects of breast cancer. Critical Reviews in Oncology/Hematology, 1992, 12, 1-23.	4.4	128
162	Analysis of tyrosine kinase mRNAs including four FGF receptor mRNAs expressed in MCF-7 breast-cancer cells. International Journal of Cancer, 1992, 50, 598-603.	5.1	47