
Jose A Casas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1945527/publications.pdf Version: 2024-02-01

LOSE & CASAS

#	Article	IF	CITATIONS
1	Treatment of cork boiling wastewater by thermal wet oxidation processes. Separation and Purification Technology, 2022, 280, 119806.	7.9	8
2	Effective degradation of cyclohexanecarboxylic acid by visible LED driven photo-Fenton. Chemical Engineering Journal Advances, 2022, 9, 100198.	5.2	3
3	Catalytic hydrodehalogenation of the flame retardant tetrabromobisphenol A by alumina-supported Pd, Rh and Pt catalysts. Chemical Engineering Journal Advances, 2022, 9, 100212.	5.2	2
4	Intensification strategies for thermal H2O2-based advanced oxidation processes: Current trends and future perspectives. Chemical Engineering Journal Advances, 2022, 9, 100228.	5.2	12
5	Monolithic Stirrer Reactors for the Sustainable Production of Dihydroxybenzenes over 3D Printed Fe/Ĵ³-Al2O3 Monoliths: Kinetic Modeling and CFD Simulation. Catalysts, 2022, 12, 112.	3.5	3
6	Application of catalytic hydrodehalogenation in drinking water treatment for organohalogenated micropollutants removal: A review. Journal of Hazardous Materials Advances, 2022, 5, 100047.	3.0	1
7	3D-Printed Fe/γ-Al ₂ O ₃ Monoliths from MOF-Based Boehmite Inks for the Catalytic Hydroxylation of Phenol. ACS Applied Materials & Interfaces, 2022, 14, 920-932.	8.0	16
8	Photocatalytic activation of peroxymonosulfate using ilmenite (FeTiO3) for Enterococcus faecalis inactivation. Journal of Environmental Chemical Engineering, 2022, 10, 108231.	6.7	11
9	UV-assisted Catalytic Wet Peroxide Oxidation and adsorption as efficient process for arsenic removal in groundwater. Catalysis Today, 2021, 361, 176-182.	4.4	17
10	Carbon-encapsulated iron nanoparticles as reusable adsorbents for micropollutants removal from water. Separation and Purification Technology, 2021, 257, 117974.	7.9	29
11	Diclofenac photodegradation with the Perovskites BaFeyTi1-yO3 as catalysts. Environmental Science and Pollution Research, 2021, 28, 23822-23832.	5.3	7
12	lron-based metal-organic frameworks integrated into 3D printed ceramic architectures. Open Ceramics, 2021, 5, 100047.	2.0	14
13	Cutting oil-water emulsion wastewater treatment by microwave assisted catalytic wet peroxide oxidation. Separation and Purification Technology, 2021, 257, 117940.	7.9	23
14	Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. Science of the Total Environment, 2021, 761, 143197.	8.0	30
15	Graphite as catalyst for UV-A LED assisted catalytic wet peroxide oxidation of ibuprofen and diclofenac. Chemical Engineering Journal Advances, 2021, 6, 100090.	5.2	10
16	The photocatalytic reduction of NO3â^' to N2 with ilmenite (FeTiO3): Effects of groundwater matrix. Water Research, 2021, 200, 117250.	11.3	21
17	A comparative study among catalytic wet air oxidation, Fenton, and Photo-Fenton technologies for the on-site treatment of hospital wastewater. Journal of Environmental Management, 2021, 290, 112624.	7.8	47
18	3D honeycomb monoliths with interconnected channels for the sustainable production of dihydroxybenzenes: towards the intensification of selective oxidation processes. Chemical Engineering and Processing: Process Intensification, 2021, 165, 108437.	3.6	10

#	Article	IF	CITATIONS
19	Palladium-based Catalytic Membrane Reactor for the continuous flow hydrodechlorination of chlorinated micropollutants. Applied Catalysis B: Environmental, 2021, 293, 120235.	20.2	23
20	Innovative iron oxide foams for the removal of micropollutants by Catalytic Wet Peroxide Oxidation: Assessment of long-term operation under continuous mode. Journal of Environmental Chemical Engineering, 2021, 9, 105914.	6.7	5
21	Adsorption of micropollutants onto realistic microplastics: Role of microplastic nature, size, age, and NOM fouling. Chemosphere, 2021, 283, 131085.	8.2	79
22	Enhanced Fluid Dynamics in 3D Monolithic Reactors to Improve the Chemical Performance: Experimental and Numerical Investigation. Industrial & Engineering Chemistry Research, 2021, 60, 14701-14712.	3.7	7
23	Graphene-based nanostructures as catalysts for wet peroxide oxidation treatments: From nanopowders to 3D printed porous monoliths. Catalysis Today, 2020, 356, 197-204.	4.4	11
24	On the deactivation and regeneration of Pd/Al2O3 catalyst for aqueous-phase hydrodechlorination of diluted chlorpromazine solution. Catalysis Today, 2020, 356, 255-259.	4.4	5
25	Boosting the catalytic activity of natural magnetite for wet peroxide oxidation. Environmental Science and Pollution Research, 2020, 27, 1176-1185.	5.3	13
26	The pH effect on the kinetics of 4-nitrophenol removal by CWPO with doped carbon black catalysts. Catalysis Today, 2020, 356, 216-225.	4.4	20
27	Fast oxidation of the neonicotinoid pesticides listed in the EU Decision 2018/840 from aqueous solutions. Separation and Purification Technology, 2020, 235, 116168.	7.9	25
28	Catalytic Hydrodehalogenation of Haloacetic Acids: A Kinetic Study. Industrial & Engineering Chemistry Research, 2020, 59, 17779-17785.	3.7	7
29	On the Role of the Cathode for the Electro-Oxidation of Perfluorooctanoic Acid. Catalysts, 2020, 10, 902.	3.5	16
30	Catalytic Wet Peroxide Oxidation of Cylindrospermopsin over Magnetite in a Continuous Fixed-Bed Reactor. Catalysts, 2020, 10, 1250.	3.5	6
31	Selective reduction of nitrate to N2 using ilmenite as a low cost photo-catalyst. Applied Catalysis B: Environmental, 2020, 273, 118930.	20.2	21
32	Simulation and Optimization of the CWPO Process by Combination of Aspen Plus and 6-Factor Doehlert Matrix: Towards Autothermal Operation. Catalysts, 2020, 10, 548.	3.5	10
33	CWPO intensification by induction heating using magnetite as catalyst. Journal of Environmental Chemical Engineering, 2020, 8, 104085.	6.7	17
34	Enhanced cork-boiling wastewater treatment by electro-assisted processes. Separation and Purification Technology, 2020, 241, 116748.	7.9	13
35	Direct Hydroxylation of Phenol to Dihydroxybenzenes by H2O2 and Fe-based Metal-Organic Framework Catalyst at Room Temperature. Catalysts, 2020, 10, 172.	3.5	21
36	Catalyst deactivation in the hydrodechlorination of micropollutants. A case of study with neonicotinoid pesticides. Journal of Water Process Engineering, 2020, 38, 101550.	5.6	3

#	Article	IF	CITATIONS
37	Intensification of catalytic wet peroxide oxidation with microwave radiation: Activity and stability of carbon materials. Separation and Purification Technology, 2019, 209, 301-306.	7.9	24
38	Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part I. Evidences of an Autocatalytic Process. Catalysts, 2019, 9, 516.	3.5	7
39	Degradation of widespread cyanotoxins with high impact in drinking water (microcystins,) Tj ETQq1 1 0.784314	rgBT /Ove 11.3	erlock 10 Tf 5 30
40	Catalytic hydrodechlorination as polishing step in drinking water treatment for the removal of chlorinated micropollutants. Separation and Purification Technology, 2019, 227, 115717.	7.9	16
41	Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part II: Activity, Nature and Stability. Catalysts, 2019, 9, 518.	3.5	3
42	Coupled heat-activated persulfate – Electrolysis for the abatement of organic matter and total nitrogen from landfill leachate. Waste Management, 2019, 97, 47-51.	7.4	21
43	TiO2-rGO photocatalytic degradation of an emerging pollutant: kinetic modelling and determination of intrinsic kinetic parameters. Journal of Environmental Chemical Engineering, 2019, 7, 103406.	6.7	17
44	Influence of TIO2-rGO optical properties on the photocatalytic activity and efficiency to photodegrade an emerging pollutant. Applied Catalysis B: Environmental, 2019, 246, 1-11.	20.2	60
45	Characterization of the gas effluent in the treatment of nitrogen containing pollutants in water by Fenton process. Separation and Purification Technology, 2019, 221, 269-274.	7.9	4
46	Evaluation of photoassisted treatments for norfloxacin removal in water using mesoporous Fe2O3-TiO2 materials. Journal of Environmental Management, 2019, 238, 243-250.	7.8	35
47	Coupled fenton-denitrification process for the removal of organic matter and total nitrogen from coke plant wastewater. Chemosphere, 2019, 224, 653-657.	8.2	22
48	Microwave-assisted catalytic wet peroxide oxidation: Energy optimization. Separation and Purification Technology, 2019, 215, 62-69.	7.9	27
49	Efficient removal of the pharmaceutical pollutants included in the EU Watch List (Decision 2015/495) by modified magnetite/H2O2. Chemical Engineering Journal, 2019, 376, 120265.	12.7	15
50	Development and application of scoring rubrics for evaluating students' competencies and learning outcomes in Chemical Engineering experimental courses. Education for Chemical Engineers, 2019, 26, 80-88.	4.8	14
51	Nature and photoreactivity of TiO2-rGO nanocomposites in aqueous suspensions under UV-A irradiation. Applied Catalysis B: Environmental, 2019, 241, 375-384.	20.2	41
52	Twoâ€step persulfate and Fenton oxidation of naphthenic acids in water. Journal of Chemical Technology and Biotechnology, 2018, 93, 2262-2270.	3.2	13
53	Kinetics of imidazolium-based ionic liquids degradation in aqueous solution by Fenton oxidation. Environmental Science and Pollution Research, 2018, 25, 34811-34817.	5.3	10
54	Optimization of Disperse Blue 3 mineralization by UV-LED/FeTiO3 activated persulfate using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 66-73.	5.3	20

#	Article	IF	CITATIONS
55	3D-Printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes. Applied Catalysis B: Environmental, 2018, 235, 246-255.	20.2	64
56	Highly efficient removal of pharmaceuticals from water by well-defined carbide-derived carbons. Chemical Engineering Journal, 2018, 347, 595-606.	12.7	34
57	Catalytic efficiency of macrocyclic-capped gold nanoparticles: cucurbit[n]urils versus cyclodextrins. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	10
58	Cyclohexanoic acid breakdown by two-step persulfate and heterogeneous Fenton-like oxidation. Applied Catalysis B: Environmental, 2018, 232, 429-435.	20.2	31
59	Assessment of carbon monoxide formation in Fenton oxidation process: The critical role of pollutant nature and operating conditions. Applied Catalysis B: Environmental, 2018, 232, 55-59.	20.2	16
60	Electro activation of persulfate using iron sheet as low-cost electrode: the role of the operating conditions. Environmental Technology (United Kingdom), 2018, 39, 1208-1216.	2.2	16
61	Antibiotics abatement in synthetic and real aqueous matrices by H2O2/natural magnetite. Catalysis Today, 2018, 313, 142-147.	4.4	32
62	Analysis of photoefficiency in TiO2 aqueous suspensions: Effect of titania hydrodynamic particle size and catalyst loading on their optical properties. Applied Catalysis B: Environmental, 2018, 221, 1-8.	20.2	49
63	Fast degradation of diclofenac by catalytic hydrodechlorination. Chemosphere, 2018, 213, 141-148.	8.2	28
64	Landfill leachate treatment by sequential combination of activated persulfate and Fenton oxidation. Waste Management, 2018, 81, 220-225.	7.4	40
65	Photocatalytic wet peroxide oxidation process at circumneutral pH using ilmenite as catalyst. Journal of Environmental Chemical Engineering, 2018, 6, 7312-7317.	6.7	8
66	Elucidation of the photocatalytic-mechanism of phenolic compounds. Journal of Environmental Chemical Engineering, 2018, 6, 5712-5719.	6.7	8
67	Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons. Environmental Science and Pollution Research, 2018, 25, 27748-27755.	5.3	13
68	Modified ilmenite as catalyst for CWPO-Photoassisted process under LED light. Chemical Engineering Journal, 2017, 318, 89-94.	12.7	31
69	Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst. Journal of Hazardous Materials, 2017, 331, 45-54.	12.4	64
70	Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology. Water Science and Technology, 2017, 75, 2216-2224.	2.5	12
71	Sulfonamides photoassisted oxidation treatments catalyzed by ilmenite. Chemosphere, 2017, 180, 523-530.	8.2	29
72	Kinetic modeling of wet peroxide oxidation with a carbon black catalyst. Applied Catalysis B: Environmental, 2017, 209, 701-710.	20.2	22

#	Article	IF	CITATIONS
73	Treatment of hospital wastewater through the CWPO-Photoassisted process catalyzed by ilmenite. Journal of Environmental Chemical Engineering, 2017, 5, 4337-4343.	6.7	35
74	P-, B- and N-doped carbon black for the catalytic wet peroxide oxidation of phenol: Activity, stability and kinetic studies. Catalysis Communications, 2017, 102, 131-135.	3.3	19
75	Defining the role of substituents on adsorption and photocatalytic degradation of phenolic compounds. Journal of Environmental Chemical Engineering, 2017, 5, 4612-4620.	6.7	21
76	UV-LED/ilmenite/persulfate for azo dye mineralization: The role of sulfate in the catalyst deactivation. Applied Catalysis B: Environmental, 2017, 219, 314-321.	20.2	59
77	An overview on the application of advanced oxidation processes for the removal of naphthenic acids from water. Critical Reviews in Environmental Science and Technology, 2017, 47, 1337-1370.	12.8	27
78	Microwave-assisted catalytic wet peroxide oxidation. Comparison of Fe catalysts supported on activated carbon and ?-alumina. Applied Catalysis B: Environmental, 2017, 218, 637-642.	20.2	47
79	Polymer-based spherical activated carbon as catalytic support for hydrodechlorination reactions. Applied Catalysis B: Environmental, 2017, 218, 498-505.	20.2	31
80	Naturally-occurring iron minerals as inexpensive catalysts for CWPO. Applied Catalysis B: Environmental, 2017, 203, 166-173.	20.2	61
81	Influence of TiO2 optical parameters in a slurry photocatalytic reactor: Kinetic modelling. Applied Catalysis B: Environmental, 2017, 200, 164-173.	20.2	52
82	Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate. Electrochimica Acta, 2017, 258, 927-932.	5.2	48
83	UV-LED assisted catalytic wet peroxide oxidation with a Fe(II)-Fe(III)/activated carbon catalyst. Applied Catalysis B: Environmental, 2016, 192, 350-356.	20.2	36
84	Synthesis of high surface area carbon adsorbents prepared from pine sawdust- Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption. Journal of Environmental Management, 2016, 183, 294-305.	7.8	56
85	Application of intensified Fenton oxidation to the treatment of hospital wastewater: Kinetics, ecotoxicity and disinfection. Journal of Environmental Chemical Engineering, 2016, 4, 4107-4112.	6.7	45
86	Mineralization of naphtenic acids with thermally-activated persulfate: The important role of oxygen. Journal of Hazardous Materials, 2016, 318, 355-362.	12.4	48
87	Cucurbit[7]uril-stabilized gold nanoparticles as catalysts of the nitro compound reduction reaction. RSC Advances, 2016, 6, 86309-86315.	3.6	15
88	Improving the Fenton process by visible LED irradiation. Environmental Science and Pollution Research, 2016, 23, 23449-23455.	5.3	15
89	Degradation of imidazolium-based ionic liquids by catalytic wet peroxide oxidation with carbon and magnetic iron catalysts. Journal of Chemical Technology and Biotechnology, 2016, 91, 2882-2887.	3.2	18
90	On the performance of Pd and Rh catalysts over different supports in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 186, 151-156.	20.2	19

#	Article	IF	CITATIONS
91	llmenite (FeTiO 3) as low cost catalyst for advanced oxidation processes. Journal of Environmental Chemical Engineering, 2016, 4, 542-548.	6.7	72
92	Degradation of organochlorinated pollutants in water by catalytic hydrodechlorination and photocatalysis. Catalysis Today, 2016, 266, 168-174.	4.4	23
93	Analysis of the deactivation of Pd, Pt and Rh on activated carbon catalysts in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 181, 429-435.	20.2	31
94	On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process. Applied Catalysis B: Environmental, 2016, 181, 249-259.	20.2	53
95	Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 202-210.	4.7	16
96	Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chemical Engineering Journal, 2015, 264, 856-862.	12.7	60
97	Role of the chemical structure of ionic liquids in their ecotoxicity and reactivity towards Fenton oxidation. Separation and Purification Technology, 2015, 150, 252-256.	7.9	36
98	Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Applied Catalysis B: Environmental, 2015, 176-177, 249-265.	20.2	593
99	Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview. Critical Reviews in Environmental Science and Technology, 2015, 45, 2611-2692.	12.8	191
100	Deactivation of a Pd/AC catalyst in the hydrodechlorination of chlorinated herbicides. Catalysis Today, 2015, 241, 86-91.	4.4	30
101	Ionic liquids breakdown by Fenton oxidation. Catalysis Today, 2015, 240, 16-21.	4.4	64
102	Application of highâ€ŧemperature Fenton oxidation for the treatment of sulfonation plant wastewater. Journal of Chemical Technology and Biotechnology, 2015, 90, 1839-1846.	3.2	22
103	Degradation of imidazoliumâ€based ionic liquids in aqueous solution by Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1197-1202.	3.2	53
104	Comparison of Fenton and Fenton-like oxidation for the treatment of cosmetic wastewater. Water Science and Technology, 2014, 70, 472-478.	2.5	13
105	Graphite and carbon black materials as catalysts for wet peroxide oxidation. Applied Catalysis B: Environmental, 2014, 144, 599-606.	20.2	54
106	Catalytic HDC/HDN of 4-chloronitrobenzene in water under ambient-like conditions with Pd supported on pillared clay. Applied Catalysis B: Environmental, 2014, 158-159, 175-181.	20.2	36
107	Complete degradation of the persistent antiâ€depressant sertraline in aqueous solution by solar photoâ€Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 814-818.	3.2	19
108	Treatment of real winery wastewater by wet oxidation at mild temperature. Separation and Purification Technology, 2014, 129, 121-128.	7.9	45

#	Article	IF	CITATIONS
109	Aqueous-phase hydrodechlorination of chlorophenols with pillared clays-supported Pt, Pd and Rh catalysts. Applied Catalysis B: Environmental, 2014, 148-149, 330-338.	20.2	110
110	Improved γ-alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols. Applied Catalysis A: General, 2014, 488, 78-85.	4.3	35
111	Fate of iron oxalates in aqueous solution: The role of temperature, iron species and dissolved oxygen. Journal of Environmental Chemical Engineering, 2014, 2, 2236-2241.	6.7	18
112	Application of intensified Fenton oxidation to the treatment of sawmill wastewater. Chemosphere, 2014, 109, 34-41.	8.2	57
113	Kinetics of wet peroxide oxidation of phenol with a gold/activated carbon catalyst. Chemical Engineering Journal, 2014, 253, 486-492.	12.7	34
114	Combining efficiently catalytic hydrodechlorination and wet peroxide oxidation (HDC–CWPO) for the abatement of organochlorinated water pollutants. Applied Catalysis B: Environmental, 2014, 150-151, 197-203.	20.2	22
115	Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chemical Engineering Journal, 2013, 228, 646-654.	12.7	25
116	Highly efficient application of activated carbon as catalyst for wet peroxide oxidation. Applied Catalysis B: Environmental, 2013, 140-141, 663-670.	20.2	91
117	Case study of the application of Fenton process to highly polluted wastewater from power plant. Journal of Hazardous Materials, 2013, 252-253, 180-185.	12.4	40
118	Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd–Fe/γ-Al2O3 catalyst. Water Research, 2013, 47, 3070-3080.	11.3	45
119	The use of cyclic voltammetry to assess the activity of carbon materials for hydrogen peroxide decomposition. Carbon, 2013, 60, 76-83.	10.3	43
120	A ferromagnetic γ-alumina-supported iron catalyst for CWPO. Application to chlorophenols. Applied Catalysis B: Environmental, 2013, 136-137, 218-224.	20.2	77
121	Enhanced Pd pillared clays by Rh inclusion for the catalytic hydrodechlorination of chlorophenols in water. Water Science and Technology, 2012, 65, 653-660.	2.5	9
122	Treatment of Highly Polluted Hazardous Industrial Wastewaters by Combined Coagulation–Adsorption and High-Temperature Fenton Oxidation. Industrial & Engineering Chemistry Research, 2012, 51, 2888-2896.	3.7	65
123	Catalytic behavior of size-controlled palladium nanoparticles in the hydrodechlorination of 4-chlorophenol in aqueous phase. Journal of Catalysis, 2012, 293, 85-93.	6.2	107
124	Triclosan breakdown by Fenton-like oxidation. Chemical Engineering Journal, 2012, 198-199, 275-281.	12.7	64
125	Chlorinated Byproducts from the Fenton-like Oxidation of Polychlorinated Phenols. Industrial & Engineering Chemistry Research, 2012, 51, 13092-13099.	3.7	36
126	On the biodegradability of nitrophenols and their reaction products by catalytic hydrogenation*. Journal of Chemical Technology and Biotechnology, 2012, 87, 1263-1269.	3.2	6

#	Article	IF	CITATIONS
127	Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. Catalysis Today, 2012, 187, 115-121.	4.4	76
128	Supported gold nanoparticle catalysts for wet peroxide oxidation. Applied Catalysis B: Environmental, 2012, 111-112, 81-89.	20.2	56
129	Intensification of the Fenton Process by Increasing the Temperature. Industrial & Engineering Chemistry Research, 2011, 50, 866-870.	3.7	173
130	Improved mineralization by combined advanced oxidation processes. Chemical Engineering Journal, 2011, 174, 134-142.	12.7	37
131	Highly stable Fe/γâ€Al ₂ O ₃ catalyst for catalytic wet peroxide oxidation. Journal of Chemical Technology and Biotechnology, 2011, 86, 497-504.	3.2	63
132	Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide. Applied Catalysis A: General, 2011, 402, 146-155.	4.3	122
133	Compared activity and stability of Pd/Al2O3 and Pd/AC catalysts in 4-chlorophenol hydrodechlorination in different pH media. Applied Catalysis B: Environmental, 2011, 103, 128-135.	20.2	89
134	Comparison of activated carbon-supported Pd and Rh catalysts for aqueous-phase hydrodechlorination. Applied Catalysis B: Environmental, 2011, 106, 469-475.	20.2	81
135	Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. Journal of Hazardous Materials, 2011, 190, 993-1000.	12.4	109
136	Hydrodechlorination of 4-chlorophenol in water using Rh–Al pillared clays. Chemical Engineering Journal, 2010, 160, 578-585.	12.7	35
137	Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Applied Catalysis B: Environmental, 2010, 93, 339-345.	20.2	56
138	Hydrodechlorination of dichloromethane with a Pd/AC catalyst: Reaction pathway and kinetics. Applied Catalysis B: Environmental, 2010, 98, 79-85.	20.2	53
139	Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catalysis Today, 2010, 151, 148-152.	4.4	81
140	Hydrodechlorination of diuron in aqueous solution with Pd, Cu and Ni on activated carbon catalysts. Chemical Engineering Journal, 2010, 163, 212-218.	12.7	24
141	CWPO of 4-CP and industrial wastewater with Al–Fe pillared clays. Water Science and Technology, 2010, 61, 2161-2168.	2.5	18
142	Denitrification of Water with Activated Carbon-Supported Metallic Catalysts. Industrial & Engineering Chemistry Research, 2010, 49, 5603-5609.	3.7	51
143	Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts. Water Science and Technology, 2010, 61, 2769-2778.	2.5	20
144	Oxidation of cosmetic wastewaters with H2O2 using a Fe/γ-Al2O3 catalyst. Water Science and Technology, 2010, 61, 1631-1636.	2.5	30

#	Article	IF	CITATIONS
145	Unstructured kinetic model for reuterin and 1,3â€propanediol production by <i>Lactobacillus reuteri</i> from glycerol/glucose cofermentation. Journal of Chemical Technology and Biotechnology, 2009, 84, 675-680.	3.2	17
146	Pd–Al pillared clays as catalysts for the hydrodechlorination of 4-chlorophenol in aqueous phase. Journal of Hazardous Materials, 2009, 172, 214-223.	12.4	51
147	Hydrodechlorination of 4-chlorophenol in water with formic acid using a Pd/activated carbon catalyst. Journal of Hazardous Materials, 2009, 161, 842-847.	12.4	52
148	Optimizing calcination temperature of Fe/activated carbon catalysts for CWPO. Catalysis Today, 2009, 143, 341-346.	4.4	66
149	Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface. Applied Catalysis B: Environmental, 2009, 86, 69-77.	20.2	149
150	Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresource Technology, 2009, 100, 4572-4578.	9.6	83
151	Kinetics of 4-Chlorophenol Hydrodechlorination with Alumina and Activated Carbon-Supported Pd and Rh Catalysts. Industrial & Engineering Chemistry Research, 2009, 48, 3351-3358.	3.7	64
152	Hydrodechlorination of 4-chlorophenol in aqueous phase with Pt–Al pillared clays using formic acid as hydrogen source. Applied Clay Science, 2009, 45, 206-212.	5.2	25
153	Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study. Water Research, 2009, 43, 4063-4069.	11.3	74
154	An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology and Biotechnology, 2008, 83, 1323-1338.	3.2	546
155	Hydrodechlorination of alachlor in water using Pd, Ni and Cu catalysts supported on activated carbon. Applied Catalysis B: Environmental, 2008, 78, 259-266.	20.2	45
156	Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol: Influence on activity, selectivity and stability. Applied Catalysis B: Environmental, 2008, 81, 105-114.	20.2	41
157	Role of the Activated Carbon Surface on Catalytic Wet Peroxide Oxidation. Industrial & Engineering Chemistry Research, 2008, 47, 8166-8174.	3.7	61
158	Kinetics of the Hydrodechlorination of 4-Chlorophenol in Water Using Pd, Pt, and Rh/Al ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 3840-3846.	3.7	113
159	Detoxification of Kraft pulp ECF bleaching effluents by catalytic hydrotreatment. Water Research, 2007, 41, 915-923.	11.3	17
160	Evolution of Ecotoxicity upon Fenton's Oxidation of Phenol in Water. Environmental Science & Technology, 2007, 41, 7164-7170.	10.0	118
161	Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chemical Engineering Journal, 2007, 131, 65-71.	12.7	95
162	Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts. Applied Catalysis B: Environmental, 2007, 76, 135-145.	20.2	67

#	Article	IF	CITATIONS
163	A kinetic study of reuterin production by Lactobacillus reuteri PRO 137 in resting cells. Biochemical Engineering Journal, 2007, 35, 218-225.	3.6	21
164	Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 2007, 143, 128-134.	12.4	233
165	Phenol oxidation by a sequential CWPO–CWAO treatment with a Fe/AC catalyst. Journal of Hazardous Materials, 2007, 146, 582-588.	12.4	36
166	A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chemical Engineering Journal, 2006, 118, 29-35.	12.7	101
167	Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 2006, 62, 115-120.	20.2	62
168	Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Applied Catalysis B: Environmental, 2006, 65, 261-268.	20.2	290
169	Hydrodechlorination of 4-chlorophenol in aqueous phase using Pd/AC catalysts prepared with modified active carbon supports. Applied Catalysis B: Environmental, 2006, 67, 68-76.	20.2	105
170	Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 2006, 67, 206-216.	20.2	62
171	Chemical Pathway and Kinetics of Phenol Oxidation by Fenton's Reagent. Environmental Science & Technology, 2005, 39, 9295-9302.	10.0	545
172	Effects of Support Surface Composition on the Activity and Selectivity of Pd/C Catalysts in Aqueous-Phase Hydrodechlorination Reactions. Industrial & Engineering Chemistry Research, 2005, 44, 6661-6667.	3.7	65
173	Treatment of chlorophenols-bearing wastewaters through hydrodechlorination using Pd/activated carbon catalysts. Carbon, 2004, 42, 1377-1381.	10.3	98
174	Use of flow cytometry for growth structured kinetic model development. Enzyme and Microbial Technology, 2004, 34, 399-406.	3.2	16
175	Evolution of Toxicity upon Wet Catalytic Oxidation of Phenol. Environmental Science & Technology, 2004, 38, 133-138.	10.0	148
176	Modeling the Influence of pH, Temperature and Culture Medium Composition on the Kinetics of Growth and Cysteine Proteinase Production by Micrococcus sp. INIA 528 in Batch Culture. Food Science and Technology International, 2001, 7, 49-57.	2.2	0
177	Viscosity of guar gum and xanthan/guar gum mixture solutions. Journal of the Science of Food and Agriculture, 2000, 80, 1722-1727.	3.5	163
178	Xanthan gum production under several operational conditions: molecular structure and rheological propertiesâ~†. Enzyme and Microbial Technology, 2000, 26, 282-291.	3.2	148
179	Xanthan gum: production, recovery, and properties. Biotechnology Advances, 2000, 18, 549-579.	11.7	1,166
180	Unstructured kinetic model for sophorolipid production by Candida bombicola. Enzyme and Microbial Technology, 1999, 25, 613-621.	3.2	41

#	Article	IF	CITATIONS
181	Title is missing!. World Journal of Microbiology and Biotechnology, 1999, 15, 269-276.	3.6	23
182	Title is missing!. World Journal of Microbiology and Biotechnology, 1999, 15, 309-316.	3.6	6
183	Sophorolipid production by Candida bombicola: Medium composition and culture methods. Journal of Bioscience and Bioengineering, 1999, 88, 488-494.	2.2	131
184	Production and Isolation of Xanthan Gum. Methods in Biotechnology, 1999, , 7-21.	0.2	4
185	Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzyme and Microbial Technology, 1997, 21, 221-229.	3.2	42
186	Apparent yield stress in xanthan gum solutions at low concentrations. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 53, B41-B46.	0.1	11
187	Viscosity of locust bean (Ceratonia siliqua) gum solutions. Journal of the Science of Food and Agriculture, 1992, 59, 97-100.	3.5	68