
## **Gregory Loeb**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1943756/publications.pdf Version: 2024-02-01



CRECORVIOER

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.                                                                                | 6.4  | 319       |
| 2  | Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services.<br>Science, 2019, 363, 282-284.                                                                                                                       | 12.6 | 183       |
| 3  | Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biology, 2008, 14, 951-957.                                                                                                | 9.5  | 180       |
| 4  | Multistate Comparison of Attractants for Monitoring Drosophila suzukii (Diptera: Drosophilidae) in<br>Blueberries and Caneberries. Environmental Entomology, 2015, 44, 704-712.                                                                       | 1.4  | 137       |
| 5  | Deciphering the routes of invasion of <i>Drosophila suzukii</i> by means of ABC random forest.<br>Molecular Biology and Evolution, 2017, 34, msx050.                                                                                                  | 8.9  | 132       |
| 6  | <i>Drosophila suzukii</i> (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable<br>Integrated Pest Management Program. Journal of Economic Entomology, 2021, 114, 1950-1974.                                                           | 1.8  | 113       |
| 7  | Identification and Field Evaluation of Grape Shoot Volatiles Attractive to Female Grape Berry Moth<br>(Paralobesia viteana). Journal of Chemical Ecology, 2008, 34, 1180-1189.                                                                        | 1.8  | 91        |
| 8  | Landscape simplification decreases wild bee pollination services to strawberry. Agriculture,<br>Ecosystems and Environment, 2015, 211, 51-56.                                                                                                         | 5.3  | 89        |
| 9  | Eavesdropping on Plant Volatiles by a Specialist Moth: Significance of Ratio and Concentration. PLoS<br>ONE, 2011, 6, e17033.                                                                                                                         | 2.5  | 73        |
| 10 | Behavioral response of spottedâ€wing drosophila, <i>Drosophila suzukii</i> Matsumura, to aversive<br>odors and a potential oviposition deterrent in the field. Pest Management Science, 2016, 72, 701-706.                                            | 3.4  | 62        |
| 11 | Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee. PLoS ONE, 2016, 11, e0150946.                                                                                                                                          | 2.5  | 61        |
| 12 | Developmental Acclimation of <i>Drosophila suzukii</i> (Diptera: Drosophilidae) and Its Effect on<br>Diapause and Winter Stress Tolerance. Environmental Entomology, 2016, 45, 1081-1089.                                                             | 1.4  | 59        |
| 13 | Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae). Journal of<br>Economic Entomology, 2015, 108, 640-653.                                                                                                     | 1.8  | 57        |
| 14 | Comparison of a Synthetic Chemical Lure and Standard Fermented Baits for TrappingDrosophila<br>suzukii(Diptera: Drosophilidae). Environmental Entomology, 2013, 42, 1052-1060.                                                                        | 1.4  | 56        |
| 15 | Simpler is better: fewer nonâ€target insects trapped with a fourâ€component chemical lure vs. a<br>chemically more complex foodâ€type bait for <i><scp>D</scp>rosophila suzukii</i> . Entomologia<br>Experimentalis Et Applicata, 2015, 154, 251-260. | 1.4  | 52        |
| 16 | The influence of temperature and photoperiod on the reproductive diapause and cold tolerance of<br>spottedâ€wing drosophila, <i><scp>D</scp>rosophila suzukii</i> . Entomologia Experimentalis Et<br>Applicata, 2016, 159, 327-337.                   | 1.4  | 48        |
| 17 | Insights Into the Ecology of <i>Grapevine red blotch virus</i> in a Diseased Vineyard. Phytopathology, 2018, 108, 94-102.                                                                                                                             | 2.2  | 44        |
| 18 | Grape Sour Rot: A Four-Way Interaction Involving the Host, Yeast, Acetic Acid Bacteria, and Insects.<br>Phytopathology, 2018, 108, 1429-1442.                                                                                                         | 2.2  | 40        |

GREGORY LOEB

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Phenotypic Plasticity Promotes Overwintering Survival in A Globally Invasive Crop Pest, Drosophila<br>suzukii. Insects, 2018, 9, 105.                                                              | 2.2 | 39        |
| 20 | Landscape context shifts the balance of costs and benefits from wildflower borders on multiple ecosystem services. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181102.   | 2.6 | 37        |
| 21 | How gut transcriptional function of <i>Drosophila melanogaster</i> varies with the presence and composition of the gut microbiota. Molecular Ecology, 2018, 27, 1848-1859.                         | 3.9 | 36        |
| 22 | Interactions Between Biotic and Abiotic Factors Affect Survival in Overwintering <i>Drosophila suzukii</i> (Diptera: Drosophilidae). Environmental Entomology, 2019, 48, 454-464.                  | 1.4 | 36        |
| 23 | Non-Crop Host Sampling Yields Insights into Small-Scale Population Dynamics of Drosophila suzukii<br>(Matsumura). Insects, 2018, 9, 5.                                                             | 2.2 | 34        |
| 24 | Habitat enhancements rescue bee body size from the negative effects of landscape simplification.<br>Journal of Applied Ecology, 2019, 56, 2144-2154.                                               | 4.0 | 33        |
| 25 | Comparison of Commercial Lures and Food Baits for Early Detection of Fruit Infestation Risk by<br>Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 2018, 111, 645-652. | 1.8 | 32        |
| 26 | Robust Manipulations of Pest Insect Behavior Using Repellents and Practical Application for<br>Integrated Pest Management. Environmental Entomology, 2017, 46, 1041-1050.                          | 1.4 | 31        |
| 27 | Not berry hungry? Discovering the hidden food sources of a small fruit specialist, <i>Drosophila suzukii</i> . Ecological Entomology, 2019, 44, 810-822.                                           | 2.2 | 30        |
| 28 | Flight Tunnel Responses of Female Grape Berry Moth (Paralobesia viteana) to Host Plants. Journal of<br>Chemical Ecology, 2008, 34, 622-627.                                                        | 1.8 | 28        |
| 29 | Interactions among morphotype, nutrition, and temperature impact fitness of an invasive fly. Ecology and Evolution, 2019, 9, 2615-2628.                                                            | 1.9 | 23        |
| 30 | Control of Sour Rot Using Chemical and Canopy Management Techniques. American Journal of<br>Enology and Viticulture, 2018, 69, 342-350.                                                            | 1.7 | 21        |
| 31 | Laboratory and Field Evaluation of Host-Related Foraging Odor-Cue Combinations to Attract<br>Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 2019, 112, 2850-2860.    | 1.8 | 21        |
| 32 | Grapevine Red Blotch Virus Is Transmitted by the Three-Cornered Alfalfa Hopper in a Circulative,<br>Nonpropagative Mode with Unique Attributes. Phytopathology, 2021, 111, 1851-1861.              | 2.2 | 20        |
| 33 | Overwintering Behavior of Drosophila suzukii, and Potential Springtime Diets for Egg Maturation.<br>Environmental Entomology, 2018, 47, 1266-1273.                                                 | 1.4 | 19        |
| 34 | <scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.                                                                                           | 3.2 | 19        |
| 35 | 2â€Pentylfuran: a novel repellent of <i>Drosophila suzukii</i> . Pest Management Science, 2021, 77,<br>1757-1764.                                                                                  | 3.4 | 17        |
| 36 | Responses of Crop Pests and Natural Enemies to Wildflower Borders Depends on Functional Group.<br>Insects, 2017, 8, 73.                                                                            | 2.2 | 16        |

Gregory Loeb

| #  | Article                                                                                                                                                                                                                     | IF        | CITATIONS                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| 37 | Insecticide Resistance in Drosophila melanogaster (Diptera: Drosophilidae) is Associated with Field<br>Control Failure of Sour Rot Disease in a New York Vineyard. Journal of Economic Entomology, 2019,<br>112, 1498-1501. | 1.8       | 15                        |
| 38 | Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach. Journal of Pest Science, 2021, 94, 743-755.                                                                     | 3.7       | 15                        |
| 39 | Factors affecting the implementation of exclusion netting to control Drosophila suzukii on primocane raspberry. Crop Protection, 2020, 135, 105191.                                                                         | 2.1       | 15                        |
| 40 | Evaluation of Strawberry Sap Beetle (Coleoptera: Nitidulidae) Use of Habitats Surrounding<br>Strawberry Plantings as Food Resources and Overwintering Sites. Environmental Entomology, 2007,<br>36, 1059-1065.              | 1.4       | 13                        |
| 41 | Potential Impact of Halyomorpha halys (Hemiptera: Pentatomidae) on Grape Production in the Finger<br>Lakes Region of New York. Journal of Entomological Science, 2014, 49, 290-303.                                         | 0.3       | 13                        |
| 42 | A Multiple-Choice Bioassay Approach for Rapid Screening of Key Attractant Volatiles. Environmental<br>Entomology, 2018, 47, 946-950.                                                                                        | 1.4       | 12                        |
| 43 | Behavioral evidence for contextual olfactoryâ€mediated avoidance of the ubiquitous phytopathogen<br><i>Botrytis cinerea</i> by <i>Drosophila suzukii</i> . Insect Science, 2020, 27, 771-779.                               | 3.0       | 11                        |
| 44 | Automated aerosol puffers effectively deliver 1â€OCTENâ€3â€OL, an oviposition antagonist useful against<br>spottedâ€wing drosophila. Pest Management Science, 2021, 77, 389-396.                                            | 3.4       | 11                        |
| 45 | Monitoring Grape Berry Moth (Paralobesia viteana: Lepidoptera) in Commercial Vineyards using a Host<br>Plant Based Synthetic Lure. Environmental Entomology, 2011, 40, 1511-1522.                                           | 1.4       | 10                        |
| 46 | Transmission of Grapevine Red Blotch Virus by Spissistilus festinus [Say, 1830] (Hemiptera:) Tj ETQq0 0 0 rgBT                                                                                                              | /Overlock | 10 Tf 50 382 <sup>-</sup> |
| 47 | Influence of Trap Design on Upwind Flight Behavior and Capture of Female Grape Berry Moth<br>(Lepidoptera: Tortricidae) With a Kairomone Lure. Environmental Entomology, 2013, 42, 150-157.                                 | 1.4       | 8                         |
| 48 | A comparison of weed, pathogen and insect pests between low tunnel and open-field grown strawberries in New York. Crop Protection, 2021, 139, 105388.                                                                       | 2.1       | 8                         |
| 49 | Plants, microbes, and odorants involved in host plant location by a specialist moth: who's making the message?. Entomologia Experimentalis Et Applicata, 2019, 167, 313-322.                                                | 1.4       | 7                         |
| 50 | Electrophysiological and behavioral identification of a volatile blend involved in host location of<br>female strawberry sap beetle, Stelidota geminata. Entomologia Experimentalis Et Applicata, 2011, 140,<br>153-162.    | 1.4       | 6                         |
| 51 | Insecticide resistance in <i>Drosophila melanogaster</i> in vineyards and evaluation of alternative insecticides. Pest Management Science, 2022, 78, 1272-1278.                                                             | 3.4       | 6                         |
| 52 | Lack of trade-off between direct and indirect defence against grape powdery mildew in riverbank grape. Ecological Entomology, 2006, 31, 415-422.                                                                            | 2.2       | 5                         |
| 53 | Field and Laboratory Testing of Feeding Stimulants to Enhance Insecticide Efficacy Against<br>Spotted-Wing Drosophila, <i>Drosophila suzukii</i> (Matsumura). Journal of Economic Entomology,<br>2021. 114. 1638-1646.      | 1.8       | 5                         |

Progress and Challenges in Building Monitoring Systems for Drosophila suzukii. , 2020, , 111-132.

**GREGORY LOEB** 

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Comparison of Three Dispenser Distribution Patterns for Pheromone Mating Disruption of<br><l>Paralobesia viteana</l> (Lepidoptera: Tortricidae) in Vineyards. Journal of Economic<br>Entomology, 2012, 105, 936-942. | 1.8 | 3         |
| 56 | Proximate Mechanisms of Host Plant Location by a Specialist Phytophagous Insect, the Grape Berry<br>Moth, Paralobesia Viteana. Journal of Chemical Ecology, 2019, 45, 946-958.                                       | 1.8 | 3         |
| 57 | Evaluation of RNA Interference for Control of the Grape Mealybug Pseudococcus maritimus<br>(Hemiptera: Pseudococcidae). Insects, 2020, 11, 739.                                                                      | 2.2 | 3         |
| 58 | The effect of plastic low tunnels on natural enemies and pollinators in New York strawberry. Crop<br>Protection, 2022, 151, 105820.                                                                                  | 2.1 | 3         |
| 59 | The Effect of Erwinia amylovora Infection in Apple Saplings and Fruit on the Behavior of Delia platura<br>(Diptera: Anthomyiidae). Environmental Entomology, 2021, 50, 117-125.                                      | 1.4 | 3         |

## 60 Evaluation of Cultural Practices for Potential to Control Strawberry Sap Beetle (Coleoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542 T

| 61 | First Record ofOligosita sanguinea(Girault) (Hymenoptera: Trichogrammatidae) as an Egg Parasitoid<br>ofHymetta balteataMcatee (Hemiptera: Cicadellidae) in Upstate New York. Entomologica Americana,<br>2013, 119, 42-43. | 0.2 | 1 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 62 | A fixed-spray system for Spotted Wing Drosophila management in high tunnel bramble crops. Journal of Berry Research, 2015, 5, 81-88.                                                                                      | 1.4 | 1 |
| 63 | Habitat cues synergize to elicit chemically mediated landing behavior in a specialist phytophagous<br>insect, the grape berry moth. Entomologia Experimentalis Et Applicata, 2020, 168, 880-889.                          | 1.4 | 1 |
| 64 | Winter warm-up frequency and the degree of temperature fluctuations affect survival outcomes of spotted-wing drosophila winter morphotypes. Journal of Insect Physiology, 2021, 131, 104246.                              | 2.0 | 1 |
| 65 | Diet Hierarchies Guide Temporal-Spatial Variation in Drosophila suzukii Resource Use. Frontiers in Ecology and Evolution, 2022, 9, .                                                                                      | 2.2 | 0 |
| 66 | The effect of <scp>UVB</scp> â€blocking plastics on efficacy of <i>Beauveria bassiana</i> and a conventional product against <i>Lygus lineolaris</i> on low tunnel strawberry. Pest Management Science, 0, , .            | 3.4 | 0 |