Andreas Kortenkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1943338/publications.pdf Version: 2024-02-01

		36303	34986
120	10,168	51	98
papers	citations	h-index	g-index
122	122	122	9545
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bisphenol A and declining semen quality: A systematic review to support the derivation of a reference dose for mixture risk assessments. International Journal of Hygiene and Environmental Health, 2022, 241, 113942.	4.3	15
2	Environmental factors in declining human fertility. Nature Reviews Endocrinology, 2022, 18, 139-157.	9.6	123
3	One planet: one health. A call to support the initiative on a global science–policy body on chemicals and waste. Environmental Sciences Europe, 2022, 34, 21.	5.5	39
4	Invited Perspective: How Relevant Are Mode-of-Action Considerations for the Assessment and Prediction of Mixture Effects?. Environmental Health Perspectives, 2022, 130, 41302.	6.0	5
5	Declining semen quality and polybrominated diphenyl ethers (PBDEs): Review of the literature to support the derivation of a reference dose for a mixture risk assessment. International Journal of Hygiene and Environmental Health, 2022, 242, 113953.	4.3	11
6	Combined exposures to bisphenols, polychlorinated dioxins, paracetamol, and phthalates as drivers of deteriorating semen quality. Environment International, 2022, 165, 107322.	10.0	24
7	Cadmium exposures and deteriorations of cognitive abilities: estimation of a reference dose for mixture risk assessments based on a systematic review and confidence rating. Environmental Health, 2022, 21, .	4.0	8
8	Ten years of research on synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environment International, 2021, 146, 106206.	10.0	153
9	Association of urinary bisphenols during pregnancy with maternal, cord blood and childhood thyroid function. Environment International, 2021, 146, 106160.	10.0	34
10	Testing for heterotopia formation in rats after developmental exposure to selected inÂvitro inhibitors of thyroperoxidase. Environmental Pollution, 2021, 283, 117135.	7.5	19
11	Association of phthalate exposure with thyroid function during pregnancy. Environment International, 2021, 157, 106795.	10.0	34
12	Advancing tools for human early lifecourse exposome research and translation (ATHLETE). Environmental Epidemiology, 2021, 5, e166.	3.0	24
13	Which chemicals should be grouped together for mixture risk assessments of male reproductive disorders?. Molecular and Cellular Endocrinology, 2020, 499, 110581.	3.2	46
14	Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nature Reviews Endocrinology, 2020, 16, 45-57.	9.6	484
15	Refined reference doses and new procedures for phthalate mixture risk assessment focused on male developmental toxicity. International Journal of Hygiene and Environmental Health, 2020, 224, 113428.	4.3	35
16	Quantitative <i>in Vitro</i> to <i>in Vivo</i> Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders. Environmental Health Perspectives, 2020, 128, 117005.	6.0	16
17	Time course of phthalate cumulative risks to male developmental health over a 27-year period: Biomonitoring samples of the German Environmental Specimen Bank. Environment International, 2020, 137, 105467.	10.0	33
18	Transthyretin-Binding Activity of Complex Mixtures Representing the Composition of Thyroid-Hormone Disrupting Contaminants in House Dust and Human Serum. Environmental Health Perspectives, 2020, 128, 17015.	6.0	36

#	Article	IF	CITATIONS
19	Let us empower the WFD to prevent risks of chemical pollution in European rivers and lakes. Environmental Sciences Europe, 2019, 31, .	5.5	13
20	Association of urinary bisphenols and triclosan with thyroid function during early pregnancy. Environment International, 2019, 133, 105123.	10.0	56
21	Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA Journal, 2019, 17, e05634.	1.8	201
22	Improved component-based methods for mixture risk assessment are key to characterize complex chemical pollution in surface waters. Environmental Sciences Europe, 2019, 31, .	5.5	41
23	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environmental Sciences Europe, 2019, 31, .	5.5	7
24	Prioritisation of water pollutants: the EU Project SOLUTIONS proposes a methodological framework for the integration of mixture risk assessments into prioritisation procedures under the European Water Framework Directive. Environmental Sciences Europe, 2019, 31, .	5.5	22
25	Mixture effects in samples of multiple contaminants – An inter-laboratory study with manifold bioassays. Environment International, 2018, 114, 95-106.	10.0	113
26	The consequences of exposure to mixtures of chemicals: Something from â€~nothing' and â€~a lot from a little' when fish are exposed to steroid hormones. Science of the Total Environment, 2018, 619-620, 1482-1492.	8.0	135
27	Current EU research activities on combined exposure to multiple chemicals. Environment International, 2018, 120, 544-562.	10.0	169
28	Regulate to reduce chemical mixture risk. Science, 2018, 361, 224-226.	12.6	226
29	Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement. Archives of Toxicology, 2017, 91, 1001-1006.	4.2	118
30	Endocrine Disruption in Human Fetal Testis Explants by Individual and Combined Exposures to Selected Pharmaceuticals, Pesticides, and Environmental Pollutants. Environmental Health Perspectives, 2017, 125, 087004.	6.0	46
31	A Human Mixture Risk Assessment for Neurodevelopmental Toxicity Associated with Polybrominated Diphenyl Ethers Used as Flame Retardants. Environmental Health Perspectives, 2017, 125, 087016.	6.0	32
32	Effects of Common Pesticides on Prostaglandin D2 (PGD2) Inhibition in SC5 Mouse Sertoli Cells, Evidence of Binding at the COX-2 Active Site, and Implications for Endocrine Disruption. Environmental Health Perspectives, 2016, 124, 452-459.	6.0	32
33	Scientific Issues Relevant to Setting Regulatory Criteria to Identify Endocrine-Disrupting Substances in the European Union. Environmental Health Perspectives, 2016, 124, 1497-1503.	6.0	37
34	Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA). Journal of Epidemiology and Community Health, 2016, 70, 741-745.	3.7	138
35	Should the scope of human mixture risk assessment span legislative/regulatory silos for chemicals?. Science of the Total Environment, 2016, 543, 757-764.	8.0	63
36	EU regulation of endocrine disruptors: a missed opportunity. Lancet Diabetes and Endocrinology,the, 2016, 4, 649-650.	11.4	4

#	Article	IF	CITATIONS
37	Science-based regulation of endocrine disrupting chemicals in Europe: which approach?. Lancet Diabetes and Endocrinology,the, 2016, 4, 643-646.	11.4	13
38	A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals. Environmental Health, 2016, 15, 74.	4.0	92
39	Bisphenol A and other phenols in human placenta from children with cryptorchidism or hypospadias. Reproductive Toxicology, 2016, 59, 89-95.	2.9	79
40	Estimating Burden and Disease Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1245-1255.	3.6	270
41	Future water quality monitoring — Adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 2015, 512-513, 540-551.	8.0	243
42	A novel biomarker for anti-androgenic activity in placenta reveals risks of urogenital malformations. Reproduction, 2015, 149, 605-613.	2.6	13
43	Assessment of phthalates/phthalate alternatives in children's toys and childcare articles: Review of the report including conclusions and recommendation of the Chronic Hazard Advisory Panel of the Consumer Product Safety Commission. Journal of Exposure Science and Environmental Epidemiology, 2015, 25, 343-353.	3.9	115
44	Male Reproductive Disorders, Diseases, and Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1267-1277.	3.6	145
45	Examining the feasibility of mixture risk assessment: A case study using a tiered approach with data of 67 pesticides from the Joint FAO/WHO Meeting on Pesticide Residues (JMPR). Food and Chemical Toxicology, 2015, 84, 260-269.	3.6	47
46	Manufacturing doubt about endocrine disrupter science – A rebuttal of industry-sponsored critical comments on the UNEP/WHO report "State of the Science of Endocrine Disrupting Chemicals 2012― Regulatory Toxicology and Pharmacology, 2015, 73, 1007-1017.	2.7	57
47	The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management. Science of the Total Environment, 2015, 503-504, 22-31.	8.0	163
48	Extending the Applicability of the Dose Addition Model to the Assessment of Chemical Mixtures of Partial Agonists by Using a Novel Toxic Unit Extrapolation Method. PLoS ONE, 2014, 9, e88808.	2.5	46
49	Mixtures of endocrine-disrupting contaminants induce adverse developmental effects in preweaning rats. Reproduction, 2014, 147, 489-501.	2.6	51
50	Changing Trends in Phthalate Exposures. Environmental Health Perspectives, 2014, 122, A264.	6.0	7
51	Mind the gap: can we explain declining male reproductive health with known antiandrogens?. Reproduction, 2014, 147, 515-527.	2.6	29
52	Late-life effects on rat reproductive system after developmental exposure to mixtures of endocrine disrupters. Reproduction, 2014, 147, 465-476.	2.6	50
53	Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Current Opinion in Pharmacology, 2014, 19, 105-111.	3.5	160
54	Non-tumorigenic epithelial cells secrete MCP-1 and other cytokines that promote cell division in breast cancer cells by activating ERα via PI3K/Akt/mTOR signaling. International Journal of Biochemistry and Cell Biology, 2014, 53, 281-294.	2.8	16

#	Article	IF	CITATIONS
55	Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products. Toxicology and Applied Pharmacology, 2014, 278, 201-208.	2.8	97
56	Dispelling urban myths about default uncertainty factors in chemical risk assessment – sufficient protection against mixture effects?. Environmental Health, 2013, 12, 53.	4.0	32
57	Cumulative risk assessment: A European perspective on the state of the art and the necessary next steps forward. Integrated Environmental Assessment and Management, 2013, 9, 547-548.	2.9	12
58	Genotoxic mixtures and dissimilar action: concepts for prediction and assessment. Archives of Toxicology, 2013, 88, 799-814.	4.2	13
59	Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Archives of Toxicology, 2013, 87, 123-143.	4.2	222
60	Salvia officinalis for Hot Flushes: Towards Determination of Mechanism of Activity and Active Principles. Planta Medica, 2013, 79, 753-760.	1.3	19
61	Seven benzimidazole pesticides combined at sub-threshold levels induce micronuclei in vitro. Mutagenesis, 2013, 28, 417-426.	2.6	44
62	The Impact of Endocrine Disruption: A Consensus Statement on the State of the Science. Environmental Health Perspectives, 2013, 121, A104-6.	6.0	267
63	Competitive Androgen Receptor Antagonism as a Factor Determining the Predictability of Cumulative Antiandrogenic Effects of Widely Used Pesticides. Environmental Health Perspectives, 2012, 120, 1578-1584.	6.0	41
64	Intrauterine exposure to mild analgesics during pregnancy and the occurrence of cryptorchidism and hypospadia in the offspring: the Generation R Study. Human Reproduction, 2012, 27, 1191-1201.	0.9	103
65	Investigation of the state of the science on combined actions of chemicals in food through dissimilar modes of action and proposal for scienceâ€based approach for performing related cumulative risk assessment. EFSA Supporting Publications, 2012, 9, 232E.	0.7	23
66	Response to A critique of the European Commission Document, "State of the Art Assessment of Endocrine Disrupters―by Rhomberg and colleagues – letter to the editor. Critical Reviews in Toxicology, 2012, 42, 787-789.	3.9	26
67	Additive Mixture Effects of Estrogenic Chemicals in Human Cell-Based Assays Can Be Influenced by Inclusion of Chemicals with Differing Effect Profiles. PLoS ONE, 2012, 7, e43606.	2.5	45
68	The suitability of concentration addition for predicting the effects of multi-component mixtures of up to 17 anti-androgens with varied structural features in an in vitro AR antagonist assay. Toxicology and Applied Pharmacology, 2011, 257, 189-197.	2.8	63
69	Joint Effects of Heterogeneous Estrogenic Chemicals in the E-Screen—Exploring the Applicability of Concentration Addition. Toxicological Sciences, 2011, 122, 383-394.	3.1	32
70	Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed as <i>in Vitro</i> Antiandrogens. Environmental Health Perspectives, 2011, 119, 794-800.	6.0	146
71	Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed as in Vitro Antiandrogens. Environmental Health Perspectives, 2011, 119, 794-800.	6.0	25
72	Cross-talk between non-genomic and genomic signalling pathways — Distinct effect profiles of environmental estrogens. Toxicology and Applied Pharmacology, 2010, 245, 160-170.	2.8	63

#	Article	IF	CITATIONS
73	Metabolomic Profiling of LiquidEchinaceaMedicinal Products withIn VitroInhibitory Effects on Cytochrome P450 3A4 (CYP3A4). Planta Medica, 2010, 76, 378-385.	1.3	34
74	12. Are Cadmium and Other Heavy Metal Compounds Acting as Endocrine Disrupters?. Metal Ions in Life Sciences, 2010, 8, 305-317.	1.0	22
75	Inability to confirm estrogenicity of the heterocyclic amine PhIP in two in vitro assays. Toxicology in Vitro, 2010, 24, 1757-1763.	2.4	5
76	The sensitivity of the MDA-kb2 cell in vitro assay in detecting anti-androgenic chemicals – Identification of sources of variability and estimation of statistical power. Toxicology in Vitro, 2010, 24, 1845-1853.	2.4	27
77	Synergistic Disruption of External Male Sex Organ Development by a Mixture of Four Antiandrogens. Environmental Health Perspectives, 2009, 117, 1839-1846.	6.0	184
78	Assessment of the total effective xenoestrogen burden in extracts of human placentas. Biomarkers, 2009, 14, 271-277.	1.9	27
79	Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology. Journal of Developmental and Physical Disabilities, 2008, 31, 233-240.	3.6	179
80	Evidence of temperature-dependent effects on the estrogenic response of fish: Implications with regard to climate change. Science of the Total Environment, 2008, 397, 72-81.	8.0	37
81	Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. Journal of Hydrology, 2008, 348, 167-175.	5.4	219
82	Estrogens and genomic instability in human breast cancer cellsinvolvement of Src/Raf/Erk signaling in micronucleus formation by estrogenic chemicals. Carcinogenesis, 2008, 29, 1862-1868.	2.8	38
83	Herbal Extracts used for Upper Respiratory Tract Infections: Are there Clinically Relevant Interactions with the Cytochrome P450 Enzyme System?. Planta Medica, 2008, 74, 657-660.	1.3	21
84	Dysgenesis and Histological Changes of Genitals and Perturbations of Gene Expression in Male Rats after In Utero Exposure to Antiandrogen Mixtures. Toxicological Sciences, 2007, 98, 87-98.	3.1	77
85	Evidence of Estrogenic Mixture Effects on the Reproductive Performance of Fish. Environmental Science & Technology, 2007, 41, 337-344.	10.0	170
86	Ten Years of Mixing Cocktails: A Review of Combination Effects of Endocrine-Disrupting Chemicals. Environmental Health Perspectives, 2007, 115, 98-105.	6.0	490
87	Combined Exposure to Anti-Androgens Exacerbates Disruption of Sexual Differentiation in the Rat. Environmental Health Perspectives, 2007, 115, 122-128.	6.0	259
88	Statistical Power Considerations Show the Endocrine Disruptor Low-Dose Issue in a New Light. Environmental Health Perspectives, 2007, 115, 84-90.	6.0	11
89	Introduction: Endocrine Disruptors—Exposure Assessment, Novel End Points, and Low-Dose and Mixture Effects. Environmental Health Perspectives, 2007, 115, 7-7.	6.0	8
90	Low-Level Exposure to Multiple Chemicals: Reason for Human Health Concerns?. Environmental Health Perspectives, 2007, 115, 106-114.	6.0	185

#	Article	IF	CITATIONS
91	Modeling Effects of Mixtures of Endocrine Disrupting Chemicals at the River Catchment Scale. Environmental Science & Technology, 2006, 40, 5478-5489.	10.0	88
92	Breast cancer, oestrogens and environmental pollutants: a re-evaluation from a mixture perspective. Journal of Developmental and Physical Disabilities, 2006, 29, 193-198.	3.6	52
93	Lack of activity of cadmium in in vitro estrogenicity assays. Toxicology and Applied Pharmacology, 2006, 216, 20-28.	2.8	66
94	Detection of DNA strand breaks and oxidized DNA bases at the single-cell level resulting from exposure to estradiol and hydroxylated metabolites. Environmental and Molecular Mutagenesis, 2005, 45, 397-404.	2.2	47
95	SEDIMENTS ARE MAJOR SINKS OF STEROIDAL ESTROGENS IN TWO UNITED KINGDOM RIVERS. Environmental Toxicology and Chemistry, 2004, 23, 945.	4.3	159
96	Biomonitoring of chromium(VI) deposited in pulmonary tissues: Pilot studies of a magnetic resonance imaging technique in a post-mortem rodent model. Biomarkers, 2004, 9, 32-46.	1.9	4
97	Deviation from Additivity with Estrogenic Mixtures Containing 4-Nonylphenol and 4-tert-Octylphenol Detected in the E-SCREEN Assay. Environmental Science & amp; Technology, 2004, 38, 6343-6352.	10.0	88
98	Biflavonoids with Cytotoxic and Antibacterial Activity fromOchna macrocalyx. Planta Medica, 2003, 69, 247-253.	1.3	44
99	Something from "Nothing―â^' Eight Weak Estrogenic Chemicals Combined at Concentrations below NOECs Produce Significant Mixture Effects. Environmental Science & Technology, 2002, 36, 1751-1756.	10.0	778
100	Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action Environmental Health Perspectives, 2002, 110, 917-921.	6.0	418
101	RAPD library fingerprinting of bacterial and human DNA: Applications in mutation detection. Teratogenesis, Carcinogenesis, and Mutagenesis, 2000, 20, 49-63.	0.8	37
102	Comparative Genomic Hybridization Reveals Extensive Variation Among Different MCF-7 Cell Stocks. Cancer Genetics and Cytogenetics, 2000, 117, 153-158.	1.0	36
103	Chromium(VI)-mediated DNA damage: oxidative pathways resulting in the formation of DNA breaks and abasic sites. Chemico-Biological Interactions, 1999, 123, 117-132.	4.0	55
104	Approaches to assessing combination effects of oestrogenic environmental pollutants. Science of the Total Environment, 1999, 233, 131-140.	8.0	65
105	Synergisms with mixtures of xenoestrogens: A reevaluation using the method of isoboles. Science of the Total Environment, 1998, 221, 59-73.	8.0	129
106	Genotypic selection of mutated DNA sequences using mismatch cleavage analysis, a possible basis for novel mutation assays. Mutagenesis, 1997, 12, 335-338.	2.6	4
107	Problems in the biological monitoring of chromium(VI) exposed individuals. Biomarkers, 1997, 2, 73-79.	1.9	12
108	A Role for Molecular Oxygen in the Formation of DNA Damage during the Reduction of the Carcinogen Chromium(VI) by Glutathione. Archives of Biochemistry and Biophysics, 1996, 329, 199-207.	3.0	127

#	Article	IF	CITATIONS
109	The chemistry underlying chromate toxicity. Transition Metal Chemistry, 1995, 20, 636-642.	1.4	77
110	The formation of both apurinic/apyrimidinic sites and single-strand breaks by chromate and glutathione arises from attack by the same single reactive species and is dependent on molecular oxygen. Carcinogenesis, 1995, 16, 805-809.	2.8	39
111	Reactive chromium species potentially generated by welding fume. Toxicological and Environmental Chemistry, 1995, 49, 149-155.	1.2	о
112	The Reductive Conversion of Chromium(VI) by Ascorbate Gives Rise to Apurinic/Apyrimidinic Sites in Isolated DNA. Chemical Research in Toxicology, 1995, 8, 884-890.	3.3	27
113	The generation of apurinic/apyrimidinic sites in isolated DNA during the reduction of chromate by glutathione. Carcinogenesis, 1994, 15, 407-409.	2.8	32
114	The formation of DNA cleaving species during the reduction of chromate by ascorbate. Carcinogenesis, 1994, 15, 1773-1778.	2.8	31
115	Defining conditions for the efficient in vitro cross-linking of proteins to DNA by chromium(III) compounds. Carcinogenesis, 1992, 13, 307-308.	2.8	25
116	Evidence for the generation of hydroxyl radicals from a chromium(V) intermediate isolated from the reaction of chromate with glutathione. Archives of Biochemistry and Biophysics, 1991, 286, 652-655.	3.0	63
117	Studies of the binding of chromium(III) complexes to phosphate groups of adenosine triphosphate. Carcinogenesis, 1991, 12, 921-926.	2.8	19
118	The reduction of chromate is a prerequisite of chromium binding to cell nuclei. Carcinogenesis, 1991, 12, 1143-1144.	2.8	41
119	Generation of PM2 DNA breaks in the course of reduction of chromium(VI) by glutathione. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1989, 216, 19-26.	0.4	86
120	Uptake of chromium (III) complexes by erythrocytes. Toxicological and Environmental Chemistry, 1987, 14, 23-32.	1.2	65