Kai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1942513/publications.pdf

Version: 2024-02-01

		516710	477307
29	1,016	16	29
papers	citations	h-index	g-index
29	29	29	1054
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Machine learning models for outcome prediction of Chinese uveal melanoma patients: A 15â€year followâ€up study. Cancer Communications, 2022, 42, 273-276.	9.2	10
2	Noninvasive identification of Benign and malignant eyelid tumors using clinical images via deep learning system. Journal of Big Data, 2022, 9, .	11.0	6
3	Deep Learning for Automatic Detection of Recurrent Retinal Detachment after Surgery Using Ultraâ€Widefield Fundus Images: A Singleâ€Center Study. Advanced Intelligent Systems, 2022, 4, .	6.1	8
4	Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study. The Lancet Digital Health, 2021, 3, e88-e97.	12.3	50
5	Automatically Diagnosing Disk Bulge and Disk Herniation With Lumbar Magnetic Resonance Images by Using Deep Convolutional Neural Networks: Method Development Study. JMIR Medical Informatics, 2021, 9, e14755.	2.6	12
6	Validation of the Relationship Between Iris Color and Uveal Melanoma Using Artificial Intelligence With Multiple Paths in a Large Chinese Population. Frontiers in Cell and Developmental Biology, 2021, 9, 713209.	3.7	4
7	Computerized assisted evaluation system for canine cardiomegaly via key points detection with deep learning. Preventive Veterinary Medicine, 2021, 193, 105399.	1.9	8
8	Prognosis Prediction of Uveal Melanoma After Plaque Brachytherapy Based on Ultrasound With Machine Learning. Frontiers in Medicine, 2021, 8, 777142.	2.6	5
9	A human-in-the-loop deep learning paradigm for synergic visual evaluation in children. Neural Networks, 2020, 122, 163-173.	5.9	12
10	Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images. Communications Biology, 2020, 3, 15.	4.4	48
11	A practical model for the identification of congenital cataracts using machine learning. EBioMedicine, 2020, 51, 102621.	6.1	28
12	Dense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders. Nature Biomedical Engineering, 2020, 4, 767-777.	22.5	42
13	Deep learning-based automated diagnosis of fungal keratitis with in vivo confocal microscopy images. Annals of Translational Medicine, 2020, 8, 706-706.	1.7	31
14	Differentiate cavernous hemangioma from schwannoma with artificial intelligence (AI). Annals of Translational Medicine, 2020, 8, 710-710.	1.7	11
15	Development and Evaluation of a Deep Learning System for Screening Retinal Hemorrhage Based on Ultra-Widefield Fundus Images. Translational Vision Science and Technology, 2020, 9, 3.	2.2	22
16	Artificial intelligence deciphers codes for color and odor perceptions based on large-scale chemoinformatic data. GigaScience, 2020, 9, .	6.4	11
17	Diagnosing chronic atrophic gastritis by gastroscopy using artificial intelligence. Digestive and Liver Disease, 2020, 52, 566-572.	0.9	71
18	Universal artificial intelligence platform for collaborative management of cataracts. British Journal of Ophthalmology, 2019, 103, 1553-1560.	3.9	87

#	Article	IF	CITATION
19	Systemically modeling the relationship between climate change and wheat aphid abundance. Science of the Total Environment, 2019, 674, 392-400.	8.0	7
20	Development and validation of deep learning algorithms for scoliosis screening using back images. Communications Biology, 2019, 2, 390.	4.4	72
21	Prediction of postoperative complications of pediatric cataract patients using data mining. Journal of Translational Medicine, 2019, 17, 2.	4.4	33
22	A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images. Annals of Translational Medicine, 2019, 7, 618-618.	1.7	36
23	Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network. PLoS ONE, 2018, 13, e0201142.	2.5	18
24	An Interpretable and Expandable Deep Learning Diagnostic System for Multiple Ocular Diseases: Qualitative Study. Journal of Medical Internet Research, 2018, 20, e11144.	4.3	41
25	Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images. Scientific Reports, 2017, 7, 41545.	3.3	41
26	Scalable and Soundness Verifiable Outsourcing Computation in Marine Mobile Computing. Wireless Communications and Mobile Computing, 2017, 2017, 1-11.	1.2	4
27	Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PLoS ONE, 2017, 12, e0168606.	2.5	72
28	Automatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network. BioMedical Engineering OnLine, 2017, 16, 132.	2.7	36
29	Extreme learning machine and adaptive sparse representation for image classification. Neural Networks, 2016, 81, 91-102.	5.9	190