Kai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1942513/publications.pdf Version: 2024-02-01

ΚΛΙΖΗΛΝΟ

#	Article	lF	CITATIONS
1	Extreme learning machine and adaptive sparse representation for image classification. Neural Networks, 2016, 81, 91-102.	5.9	190
2	Universal artificial intelligence platform for collaborative management of cataracts. British Journal of Ophthalmology, 2019, 103, 1553-1560.	3.9	87
3	Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PLoS ONE, 2017, 12, e0168606.	2.5	72
4	Development and validation of deep learning algorithms for scoliosis screening using back images. Communications Biology, 2019, 2, 390.	4.4	72
5	Diagnosing chronic atrophic gastritis by gastroscopy using artificial intelligence. Digestive and Liver Disease, 2020, 52, 566-572.	0.9	71
6	Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study. The Lancet Digital Health, 2021, 3, e88-e97.	12.3	50
7	Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images. Communications Biology, 2020, 3, 15.	4.4	48
8	Dense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders. Nature Biomedical Engineering, 2020, 4, 767-777.	22.5	42
9	Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images. Scientific Reports, 2017, 7, 41545.	3.3	41
10	An Interpretable and Expandable Deep Learning Diagnostic System for Multiple Ocular Diseases: Qualitative Study. Journal of Medical Internet Research, 2018, 20, e11144.	4.3	41
11	Automatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network. BioMedical Engineering OnLine, 2017, 16, 132.	2.7	36
12	A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images. Annals of Translational Medicine, 2019, 7, 618-618.	1.7	36
13	Prediction of postoperative complications of pediatric cataract patients using data mining. Journal of Translational Medicine, 2019, 17, 2.	4.4	33
14	Deep learning-based automated diagnosis of fungal keratitis with in vivo confocal microscopy images. Annals of Translational Medicine, 2020, 8, 706-706.	1.7	31
15	A practical model for the identification of congenital cataracts using machine learning. EBioMedicine, 2020, 51, 102621.	6.1	28
16	Development and Evaluation of a Deep Learning System for Screening Retinal Hemorrhage Based on Ultra-Widefield Fundus Images. Translational Vision Science and Technology, 2020, 9, 3.	2.2	22
17	Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network. PLoS ONE, 2018, 13, e0201142.	2.5	18
18	A human-in-the-loop deep learning paradigm for synergic visual evaluation in children. Neural Networks, 2020, 122, 163-173.	5.9	12

Kai Zhang

#	Article	IF	CITATIONS
19	Automatically Diagnosing Disk Bulge and Disk Herniation With Lumbar Magnetic Resonance Images by Using Deep Convolutional Neural Networks: Method Development Study. JMIR Medical Informatics, 2021, 9, e14755.	2.6	12
20	Differentiate cavernous hemangioma from schwannoma with artificial intelligence (AI). Annals of Translational Medicine, 2020, 8, 710-710.	1.7	11
21	Artificial intelligence deciphers codes for color and odor perceptions based on large-scale chemoinformatic data. CigaScience, 2020, 9, .	6.4	11
22	Machine learning models for outcome prediction of Chinese uveal melanoma patients: A 15â€year followâ€up study. Cancer Communications, 2022, 42, 273-276.	9.2	10
23	Computerized assisted evaluation system for canine cardiomegaly via key points detection with deep learning. Preventive Veterinary Medicine, 2021, 193, 105399.	1.9	8
24	Deep Learning for Automatic Detection of Recurrent Retinal Detachment after Surgery Using Ultraâ€Widefield Fundus Images: A Singleâ€Center Study. Advanced Intelligent Systems, 2022, 4, .	6.1	8
25	Systemically modeling the relationship between climate change and wheat aphid abundance. Science of the Total Environment, 2019, 674, 392-400.	8.0	7
26	Noninvasive identification of Benign and malignant eyelid tumors using clinical images via deep learning system. Journal of Big Data, 2022, 9, .	11.0	6
27	Prognosis Prediction of Uveal Melanoma After Plaque Brachytherapy Based on Ultrasound With Machine Learning. Frontiers in Medicine, 2021, 8, 777142.	2.6	5
28	Scalable and Soundness Verifiable Outsourcing Computation in Marine Mobile Computing. Wireless Communications and Mobile Computing, 2017, 2017, 1-11.	1.2	4
29	Validation of the Relationship Between Iris Color and Uveal Melanoma Using Artificial Intelligence With Multiple Paths in a Large Chinese Population. Frontiers in Cell and Developmental Biology, 2021, 9, 713209.	3.7	4