
Jack J W A Van Loon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1941222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of Reduced Gravity Simulators for Plant Biological Studies. Methods in Molecular Biology, 2022, 2368, 241-265.	0.9	3
2	A novel device to study altered gravity and light interactions in seedling tropisms. Life Sciences in Space Research, 2022, 32, 8-16.	2.3	8
3	Interaction of gravitropism and phototropism in roots of Brassica oleracea. Environmental and Experimental Botany, 2022, 193, 104700.	4.2	11
4	Stability Studies of UV Laser Irradiated Promethazine and Thioridazine after Exposure to Hypergravity Conditions. Molecules, 2022, 27, 1728.	3.8	1
5	WHICH PRECOCIAL RODENT SPECIES IS MORE SUITABLE AS THE EXPERIMENTAL MODEL OF MICROGRAVITY INFLUENCE ON PRENATAL MUSCULOSKETAL DEVELOPMENT ON INTERNATIONAL SPACE STATION?. Life Sciences in Space Research, 2022, 33, 48-57.	2.3	0
6	Exposure to hypergravity during zebrafish development alters cartilage material properties and strain distribution. Bone and Joint Research, 2021, 10, 137-148.	3.6	13
7	Hypergravity affects cell traction forces of fibroblasts. Biophysical Journal, 2021, 120, 773-780.	0.5	7
8	Artificially altered gravity elicits cell homeostasis imbalance in planarian worms, and cerium oxide nanoparticles counteract this effect. Journal of Biomedical Materials Research - Part A, 2021, 109, 2322-2333.	4.0	4
9	The effect of hypergravity in intestinal permeability of nanoformulations and molecules. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 38-48.	4.3	1
10	Photoactive chlorpromazine and promazine drugs exposed to hypergravity conditions after interaction with UV laser radiation. Acta Astronautica, 2021, 189, 260-268.	3.2	4
11	Human physiology adaptation to altered gravity environments. Acta Astronautica, 2021, 189, 216-221.	3.2	30
12	Collaboration Around Rare Bone Diseases Leads to the Unique Organizational Incentive of the Amsterdam Bone Center. Frontiers in Endocrinology, 2020, 11, 481.	3.5	3
13	Some Challenges in Gravity Related Research. Frontiers in Space Technologies, 2020, 1, .	1.4	1
14	Molecular impact of launch related dynamic vibrations and static hypergravity in planarians. Npj Microgravity, 2020, 6, 25.	3.7	6
15	Gravity Deprivation: Is It Ethical for Optimal Physiology?. Frontiers in Physiology, 2020, 11, 470.	2.8	8
16	Survival of the Halophilic Archaeon Halovarius luteus after Desiccation, Simulated Martian UV Radiation and Vacuum in Comparison to Bacillus atrophaeus. Origins of Life and Evolution of Biospheres, 2020, 50, 157-173.	1.9	6
17	Hypergravity Activates a Pro-Angiogenic Homeostatic Response by Human Capillary Endothelial Cells. International Journal of Molecular Sciences, 2020, 21, 2354.	4.1	16
18	Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized <i>Arabidopsis</i> cell culture. Plant, Cell and Environment, 2019, 42, 480-494.	5.7	22

#	Article	IF	CITATIONS
19	A Note on Liquid Velocities Arising during Decompression Degassing in Hypergravity. Microgravity Science and Technology, 2019, 31, 505-515.	1.4	1
20	Subcooled flow boiling in horizontal and vertical macro-channel under Earth-gravity and hyper-gravity conditions. International Journal of Heat and Mass Transfer, 2019, 133, 36-51.	4.8	16
21	Measuring Intracellular Viscosity in Conditions of Hypergravity. Biophysical Journal, 2019, 116, 1984-1993.	0.5	24
22	Degassing of a decompressed flowing liquid under hypergravity conditions. International Journal of Multiphase Flow, 2019, 115, 126-136.	3.4	6
23	Transcriptomic Analysis of Planarians under Simulated Microgravity or 8 g Demonstrates That Alteration of Gravity Induces Genomic and Cellular Alterations That Could Facilitate Tumoral Transformation. International Journal of Molecular Sciences, 2019, 20, 720.	4.1	5
24	Editorial: Gravitational Physiology, Aging and Medicine. Frontiers in Physiology, 2019, 10, 1338.	2.8	9
25	Comparison of Microgravity Analogs to Spaceflight in Studies of Plant Growth and Development. Frontiers in Plant Science, 2019, 10, 1577.	3.6	81
26	Wave Turbulence on the Surface of a Fluid in a High-Gravity Environment. Physical Review Letters, 2019, 123, 244501.	7.8	7
27	Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated microgravity. Genomics, 2019, 111, 1956-1965.	2.9	17
28	Spiculous skeleton formation in the freshwater sponge <i>Ephydatia fluviatilis</i> under hypergravity conditions. PeerJ, 2019, 6, e6055.	2.0	11
29	Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development. Npj Microgravity, 2018, 4, 9.	3.7	35
30	Solidâ€state foaming of epoxy resin under hypergravity and simulated microgravity. Advances in Polymer Technology, 2018, 37, 2616-2624.	1.7	3
31	Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Scientific Reports, 2018, 8, 6424.	3.3	49
32	Continuous Exposure to Simulated Hypergravity-Induced Changes in Proliferation, Morphology, and Gene Expression of Human Tendon Cells. Stem Cells and Development, 2018, 27, 858-869.	2.1	12
33	Embedding Arabidopsis Plant Cell Suspensions in Low-Melting Agarose Facilitates Altered Gravity Studies. Microgravity Science and Technology, 2017, 29, 115-119.	1.4	4
34	Experimental study of gliding arc plasma channel motion: buoyancy and gas flow phenomena under normal and hypergravity conditions. Plasma Sources Science and Technology, 2017, 26, 045014.	3.1	9
35	Fluid dynamics during Random Positioning Machine micro-gravity experiments. Advances in Space Research, 2017, 59, 3045-3057.	2.6	14
36	Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. Npj Microgravity, 2017, 3, 8.	3.7	106

#	Article	IF	CITATIONS
37	Earth as a Tool for Astrobiology—A European Perspective. Space Science Reviews, 2017, 209, 43-81.	8.1	68
38	Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond. Space Science Reviews, 2017, 209, 83-181.	8.1	54
39	Early Effects of Altered Gravity Environments on Plant Cell Growth and Cell Proliferation: Characterization of Morphofunctional Nucleolar Types in an Arabidopsis Cell Culture System. Frontiers in Astronomy and Space Sciences, 2016, 3, .	2.8	20
40	Centrifuges for Microgravity Simulation. The Reduced Gravity Paradigm. Frontiers in Astronomy and Space Sciences, 2016, 3, .	2.8	18
41	Hypergravity Facilities in the ESA Ground-Based Facility Program – Current Research Activities and Future Tasks. Microgravity Science and Technology, 2016, 28, 205-214.	1.4	33
42	Effects of hypergravity on the angiogenic potential of endothelial cells. Journal of the Royal Society Interface, 2016, 13, 20160688.	3.4	11
43	Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. Journal of Plant Physiology, 2016, 207, 30-41.	3.5	29
44	Effects of microgravity simulation on zebrafish transcriptomes and bone physiology—exposure starting at 5 days post fertilization. Npj Microgravity, 2016, 2, 16010.	3.7	19
45	The SCD – Stem Cell Differentiation ESA Project: Preparatory Work for the Spaceflight Mission. Microgravity Science and Technology, 2016, 28, 19-28.	1.4	1
46	Facilities for Simulation of Microgravity in the ESA Ground-Based Facility Programme. Microgravity Science and Technology, 2016, 28, 191-203.	1.4	71
47	Evaluation of Simulated Microgravity Environments Induced by Diamagnetic Levitation of Plant Cell Suspension Cultures. Microgravity Science and Technology, 2016, 28, 309-317.	1.4	12
48	How Microgravity Affects the Biology of Living Systems. BioMed Research International, 2015, 2015, 1-4.	1.9	44
49	Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity. PLoS ONE, 2015, 10, e0126928.	2.5	74
50	Gravity effects on a gliding arc in four noble gases: from normal to hypergravity. Plasma Sources Science and Technology, 2015, 24, 022002.	3.1	6
51	Mechanics of Extracellular Vesicles from Red Blood Cells. Biophysical Journal, 2015, 108, 242a.	0.5	1
52	A Comparison of Torque Forces Used to Apply Intermaxillary Fixation Screws. Journal of Oral and Maxillofacial Surgery, 2015, 73, 2367-2374.	1.2	1
53	Transient Intervals of Hyper-Gravity Enhance Endothelial Barrier Integrity: Impact of Mechanical and Gravitational Forces Measured Electrically. PLoS ONE, 2015, 10, e0144269.	2.5	16
54	Planarians Sense Simulated Microgravity and Hypergravity. BioMed Research International, 2014, 2014, 1-10.	1.9	14

#	Article	IF	CITATIONS
55	Invited Review Article: Advanced light microscopy for biological space research. Review of Scientific Instruments, 2014, 85, 101101.	1.3	24
56	The Impact of Simulated and Real Microgravity on Bone Cells and Mesenchymal Stem Cells. BioMed Research International, 2014, 2014, 1-15.	1.9	80
57	Nanostructured substrate conformation can decrease osteoblast-like cell dysfunction in simulated microgravity conditions. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 978-988.	2.7	5
58	Hypergravity synthesis of graphitic carbon nanomaterial in glide arc plasma. Materials Research Bulletin, 2014, 54, 61-65.	5.2	4
59	Growing Tissues in Real and Simulated Microgravity: New Methods for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2014, 20, 555-566.	4.8	117
60	Gliding Arc in Noble Gases Under Normal and Hypergravity Conditions. IEEE Transactions on Plasma Science, 2014, 42, 2724-2725.	1.3	8
61	The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB Journal, 2014, 28, 536-547.	0.5	128
62	Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: A model for cell-mechanics studies. Acta Biomaterialia, 2013, 9, 6653-6662.	8.3	18
63	Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis. BMC Evolutionary Biology, 2013, 13, 133.	3.2	8
64	Influence of Oxygen in the Cultivation of Human Mesenchymal Stem Cells in Simulated Microgravity: An Explorative Study. Microgravity Science and Technology, 2013, 25, 59-66.	1.4	8
65	Relation Between Motility, Accelerated Aging and Gene Expression in Selected Drosophila Strains under Hypergravity Conditions. Microgravity Science and Technology, 2013, 25, 67-72.	1.4	4
66	Adaptation response of Arabidopsis thaliana to random positioning. Advances in Space Research, 2013, 52, 1320-1331.	2.6	6
67	Hypergravity effects on glide arc plasma. European Physical Journal D, 2013, 67, 1.	1.3	12
68	Substrate Nanotexture and Hypergravity Through Centrifugation Enhance Initial Osteoblastogenesis. Tissue Engineering - Part A, 2013, 19, 114-124.	3.1	16
69	Role of Mechanical Properties of Cell Mediated Vesicles in Membrane Fusion. Biophysical Journal, 2013, 104, 620a.	0.5	4
70	Influence of the gravity on the discharge of a silo. Granular Matter, 2013, 15, 263-273.	2.2	45
71	Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology. Astrobiology, 2013, 13, 1-17.	3.0	372
72	Proteomic Signature of Arabidopsis Cell Cultures Exposed to Magnetically Induced Hyper- and Microgravity Environments. Astrobiology, 2013, 13, 217-224.	3.0	32

#	Article	IF	CITATIONS
73	Cell Wall Assembly and Intracellular Trafficking in Plant Cells Are Directly Affected by Changes in the Magnitude of Gravitational Acceleration. PLoS ONE, 2013, 8, e58246.	2.5	21
74	The behavioural-driven response of the Drosophila imago transcriptome to different types of modified gravity. Genomics Discovery, 2013, 1, 1.	0.2	1
75	Shortâ€ŧerm weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. FASEB Journal, 2012, 26, 639-655.	0.5	77
76	Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration. Planetary and Space Science, 2012, 74, 111-120.	1.7	30
77	Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics, 2012, 13, 105.	2.8	43
78	Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics, 2012, 13, 52.	2.8	47
79	A Hypergravity Environment Induced by Centrifugation Alters Plant Cell Proliferation and Growth in an Opposite Way to Microgravity. Microgravity Science and Technology, 2012, 24, 373-381.	1.4	21
80	ESA Parabolic Flights, Drop Tower and Centrifuge Opportunities for University Students. Microgravity Science and Technology, 2011, 23, 181-189.	1.4	23
81	Simulation of Microgravity by Magnetic Levitation and Random Positioning: Effect on Human A431 Cell Morphology. Microgravity Science and Technology, 2011, 23, 249-261.	1.4	21
82	Differential Gene Regulation under Altered Gravity Conditions in Follicular Thyroid Cancer Cells: Relationship between the Extracellular Matrix and the Cytoskeleton. Cellular Physiology and Biochemistry, 2011, 28, 185-198.	1.6	88
83	Areas of Research. , 2011, , 55-170.		0
84	The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. Biomaterials, 2010, 31, 7758-7765.	11.4	66
85	Stress Response by Bone Cells and Implications on Microgravity Environment. Clinical Reviews in Bone and Mineral Metabolism, 2010, 8, 179-188.	0.8	1
86	Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome. Molecular Ecology, 2010, 19, 4255-4264.	3.9	35
87	Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. Journal of Plant Physiology, 2010, 167, 184-193.	3.5	131
88	Gravity control of growth form in <i>Brassica rapa</i> and <i>Arabidopsis thaliana</i> (Brassicaceae): Consequences for secondary metabolism. American Journal of Botany, 2009, 96, 652-660.	1.7	17
89	Noise enhances the rapid nitric oxide production by bone cells in response to fluid shear stress. Technology and Health Care, 2009, 17, 57-65.	1.2	11
90	<i>Brassica rapa</i> L. seed development in hypergravity. Seed Science Research, 2009, 19, 63-72.	1.7	10

#	Article	IF	CITATIONS
91	Hypergravity prevents seed production in Arabidopsis by disrupting pollen tube growth. Planta, 2009, 230, 863-870.	3.2	12
92	Technology and Developments for the Random Positioning Machine, RPM. Microgravity Science and Technology, 2009, 21, 287-292.	1.4	185
93	The Human Centrifuge. Microgravity Science and Technology, 2009, 21, 203-207.	1.4	7
94	Mechanomics and Physicomics in Gravisensing. Microgravity Science and Technology, 2009, 21, 159-167.	1.4	24
95	Seed Germination and Seedling Growth under Simulated Microgravity Causes Alterations in Plant Cell Proliferation and Ribosome Biogenesis. Microgravity Science and Technology, 2009, 21, 169-174.	1.4	13
96	Drosophila GENE Experiment in the Spanish Soyuz Mission to the ISS: II. Effects of the Containment Constraints. Microgravity Science and Technology, 2009, 21, 299-304.	1.4	10
97	Germination of Arabidopsis Seed in Space and in Simulated Microgravity: Alterations in Root Cell Growth and Proliferation. Microgravity Science and Technology, 2009, 21, 293-297.	1.4	21
98	An atomic force microscope operating at hypergravity for <i>in situ</i> measurement of cellular mechanoâ€response. Journal of Microscopy, 2009, 233, 234-243.	1.8	18
99	Round versus flat: Bone cell morphology, elasticity, and mechanosensing. Journal of Biomechanics, 2008, 41, 1590-1598.	2.1	131
100	Manufacturing substrate nano-grooves for studying cell alignment and adhesion. Microelectronic Engineering, 2008, 85, 1362-1366.	2.4	44
101	Some history and use of the random positioning machine, RPM, in gravity related research. Advances in Space Research, 2007, 39, 1161-1165.	2.6	233
102	Comparative analysis of Drosophila melanogaster and Caenorhabditis elegans gene expression experiments in the European Soyuz flights to the International Space Station. Advances in Space Research, 2007, 40, 506-512.	2.6	23
103	The national — esa soyuz missions andromède, marco polo, odissea, cervantes, delta and eneide. Microgravity Science and Technology, 2007, 19, 9-32.	1.4	8
104	The "root―experiment of the "cervantes―spanish soyuz mission: Cell proliferation and nucleolar activity alterations in arabidopsis roots germinated in real or simulated microgravity. Microgravity Science and Technology, 2007, 19, 128-132.	1.4	13
105	Microgravity and bone cell mechanosensitivity: FLOW experiment during the DELTA mission. Microgravity Science and Technology, 2007, 19, 133-137.	1.4	5
106	Seeds-in-space education experiment during the Dutch soyuz mission DELTA. Microgravity Science and Technology, 2007, 19, 244-248.	1.4	1
107	The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials, 2007, 28, 3944-3951.	11.4	311
108	Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. Journal of Orthopaedic Research, 2006, 24, 1170-1177.	2.3	36

#	Article	IF	CITATIONS
109	Bone cell responses to highâ€frequency vibration stress: does the nucleus oscillate within the cytoplasm?. FASEB Journal, 2006, 20, 858-864.	0.5	122
110	Dynamic shear stress in parallel-plate flow chambers. Journal of Biomechanics, 2005, 38, 159-167.	2.1	154
111	Initial Stress-Kick Is Required for Fluid Shear Stress-Induced Rate Dependent Activation of Bone Cells. Annals of Biomedical Engineering, 2005, 33, 104-110.	2.5	32
112	Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. American Journal of Physiology - Cell Physiology, 2005, 288, C1211-C1221.	4.6	120
113	Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochemical and Biophysical Research Communications, 2004, 315, 823-829.	2.1	166
114	Centrifuges and inertial shear forces. Journal of Gravitational Physiology: A Journal of the International Society for Gravitational Physiology, 2004, 11, 29-38.	0.0	3
115	BIOPACK: the ground controlled late access biological research facility. Journal of Gravitational Physiology: A Journal of the International Society for Gravitational Physiology, 2004, 11, 57-65.	0.0	1
116	Microgravity and bone cell mechanosensitivity. Advances in Space Research, 2003, 32, 1551-1559.	2.6	66
117	Inertial Shear Forces and the Use of Centrifuges in Gravity Research. What is the Proper Control?. Journal of Biomechanical Engineering, 2003, 125, 342-346.	1.3	42
118	Inertial shear force and the impact on facilities for the International Space Station. Journal of Gravitational Physiology: A Journal of the International Society for Gravitational Physiology, 2002, 9, P359-60.	0.0	0
119	Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta, 2000, 211, 415-422.	3.2	106
120	Bone and space flight: an overview. , 1996, , 259-299.		7
121	Decreased mineralization and increased calcium release in isolated fetal mouse long bones under near weightlessness. Journal of Bone and Mineral Research, 1995, 10, 550-557.	2.8	85
122	Development of tissue culture techniques and hardware to study mineralization under microgravity conditions. Advances in Space Research, 1994, 14, 289-298.	2.6	4
123	Osteoclastic Invasion and Mineral Resorption of Fetal Mouse Long Bone Rudiments are Inhibited by Culture Under Intermittent Compressive Force. Connective Tissue Research, 1989, 20, 131-141.	2.3	14
124	Mineralization and resorption in fetal mouse long bones under microgravity; development of a vitro technique for experiments in the Biorack facility of spacelab. Cell Differentiation and Development, 1989, 27, 230.	0.4	0
125	TISSUE REPAIR AND REGENERATION IN SPACE AND ON EARTH. Frontiers in Physiology, 0, 9, .	2.8	2