
Shu-Feng Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1940346/publications.pdf Version: 2024-02-01

SHULFENC SONC

#	Article	IF	CITATIONS
1	Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 2018, 389, 198-213.	7.8	964
2	A Na+ Superionic Conductor for Room-Temperature Sodium Batteries. Scientific Reports, 2016, 6, 32330.	3.3	160
3	Composite Solid Polymer Electrolyte with Garnet Nanosheets in Poly(ethylene oxide). ACS Sustainable Chemistry and Engineering, 2019, 7, 7163-7170.	6.7	131
4	A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. Journal of Materials Chemistry A, 2017, 5, 6424-6431.	10.3	93
5	Flexible electrochemical energy storage: The role of composite materials. Composites Science and Technology, 2020, 192, 108102.	7.8	82
6	Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study. Nanomaterials, 2017, 7, 265.	4.1	78
7	High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the doping Ca ions. Materials and Design, 2016, 93, 232-237.	7.0	67
8	Crystal structure, migration mechanism and electrochemical performance of Cr-stabilized garnet. Solid State Ionics, 2014, 268, 135-139.	2.7	50
9	Synthesis and properties of poly(1,3-dioxolane) <i>in situ</i> quasi-solid-state electrolytes <i>via</i> a rare-earth triflate catalyst. Chemical Communications, 2021, 57, 7934-7937.	4.1	39
10	Improvement of Li ion conductivity of Li 5 La 3 Ta 2 O 12 solid electrolyte by substitution of Ge for Ta. Journal of Power Sources, 2017, 349, 105-110.	7.8	37
11	Y-Doped Na ₂ ZrO ₃ : A Na-Rich Layered Oxide as a High-Capacity Cathode Material for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 4785-4792.	6.7	36
12	Construction of 3D CoO Quantum Dots/Graphene Hydrogels as Binder-Free Electrodes for Ultra-high Rate Energy Storage Applications. Electrochimica Acta, 2017, 243, 152-161.	5.2	32
13	Preparation of Nanocomposite Polymer Electrolyte via In Situ Synthesis of SiO2 Nanoparticles in PEO. Nanomaterials, 2020, 10, 157.	4.1	32
14	Composite Hybrid Quasi-Solid Electrolyte for High-Energy Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 7973-7982.	5.1	30
15	A facile strategy to achieve high conduction and excellent chemical stability of lithium solid electrolytes. RSC Advances, 2015, 5, 6588-6594.	3.6	28
16	Na-rich layered Na2Ru0.95Zr0.05O3 cathode material for Na-ion batteries. Journal of Power Sources, 2017, 342, 685-689.	7.8	28
17	Short carbon fiber reinforced epoxy-ionic liquid electrolyte enabled structural battery via vacuum bagging process. Advanced Composites and Hybrid Materials, 2022, 5, 1799-1811.	21.1	27
18	A facile method for the synthesis of a sintering dense nano-grained Na ₃ Zr ₂ Si ₂ PO ₁₂ Na ⁺ -ion solid-state electrolyte. Chemical Communications, 2021, 57, 4023-4026.	4.1	26

SHU-FENG SONG

#	Article	IF	CITATIONS
19	Na-rich layered Na2Ti1â^'xCrxO3â^'x/2 (x = 0, 0.06): Na-ion battery cathode materials with high capacity long cycle life. Scientific Reports, 2017, 7, 373.	v and	25
20	Preparation of thin solid electrolyte by hot-pressing and diamond wire slicing. RSC Advances, 2019, 9, 11670-11675.	3.6	25
21	Al conductive hybrid solid polymer electrolyte. Solid State Ionics, 2017, 300, 165-168.	2.7	24
22	Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. Materials Today Energy, 2022, 23, 100893.	4.7	24
23	Roles of Alkaline Earth Ions in Garnetâ€Type Superionic Conductors. ChemElectroChem, 2017, 4, 266-271.	3.4	23
24	Communication—Poly(ethylene oxide)-Immobilized Ionogel with High Ionic Liquid Loading and Superior Ionic Conductivity. Journal of the Electrochemical Society, 2016, 163, A2887-A2889.	2.9	22
25	Gallium-substituted Nasicon Na3Zr2Si2PO12 solid electrolytes. Journal of Alloys and Compounds, 2021, 855, 157501.	5.5	20
26	High-Strength Poly(ethylene oxide) Composite Electrolyte Reinforced with Glass Fiber and Ceramic Electrolyte Simultaneously for Structural Energy Storage. ACS Applied Energy Materials, 2021, 4, 4038-4049.	5.1	19
27	Multi-substituted garnet-type electrolytes for solid-state lithium batteries. Ceramics International, 2020, 46, 5489-5494.	4.8	18
28	Lithium superionic conductors Li10MP ₂ 012 (M = Ge, Si). Functional Materials Letters, 2018, 11, 1850039.	1.2	17
29	Conformal, nanoscale γ-Al2O3 coating of garnet conductors for solid-state lithium batteries. Solid State Ionics, 2019, 342, 115063.	2.7	15
30	Application of sodium-ion-based solid electrolyte in electrostatic tuning of carrier density in graphene. Scientific Reports, 2017, 7, 3168.	3.3	13
31	Dual Substitution and Spark Plasma Sintering to Improve Ionic Conductivity of Garnet Li7La3Zr2O12. Nanomaterials, 2019, 9, 721.	4.1	13
32	LLZO@EmimFSI@PEO derived hybrid solid electrolyte for high-energy lithium metal batteries. Materials Technology, 2020, 35, 618-624.	3.0	13
33	A composite electrolyte with Na3Zr2Si2PO12 microtube for solid-state sodium-metal batteries. Ceramics International, 2021, 47, 11156-11168.	4.8	13
34	Fabricating 3D Macroscopic Graphene-Based Architectures with Outstanding Flexibility by the Novel Liquid Drop/Colloid Flocculation Approach for Energy Storage Applications. ACS Applied Materials & Interfaces, 2018, 10, 21991-22001.	8.0	12
35	A hybrid solid electrolyte for high-energy solid-state sodium metal batteries. Applied Physics Letters, 2022, 120, .	3.3	10
36	Lithium metal structural battery developed with vacuum bagging. Journal of Materials Chemistry C, 2022, 10, 1887-1895.	5.5	7

#	Article	IF	CITATIONS
37	Ultrathin, Compacted Gel Polymer Electrolytes Enable Highâ€Energy and Stableâ€Cycling 4 V Lithiumâ€Metal Batteries. ChemElectroChem, 2020, 7, 3656-3662.	3.4	5
38	Ultrathin, dense, hybrid polymer/ceramic gel electrolyte for high energy lithium metal batteries. Materials Letters, 2020, 279, 128480.	2.6	4
39	Editorial: Solid-state electrolytes and solid-state batteries for next-generation energy storage. Functional Materials Letters, 2021, 14, 2102001.	1.2	1