Maren Pink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1940165/publications.pdf

Version: 2024-02-01

147726 161767 3,400 93 31 54 h-index citations g-index papers 102 102 102 4627 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Alkali Metal Ions Dictate the Structure and Reactivity of an Iron(II) Imido Complex. Journal of the American Chemical Society, 2022, 144, 1786-1794.	6.6	14
2	Cyanographite. Journal of Physical Chemistry C, 2022, 126, 3001-3008.	1.5	2
3	High-Spin ($\langle i \rangle S \langle j \rangle = 1$) Blatter-Based Diradical with Robust Stability and Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 6059-6070.	6.6	30
4	Effect of Au/HfS ₃ interfacial interactions on properties of HfS ₃ -based devices. Physical Chemistry Chemical Physics, 2022, 24, 14016-14021.	1.3	7
5	Synthesis and Thin Films of Thermally Robust Quartet ($\langle i \rangle S \langle i \rangle = 3/2$) Ground State Triradical. Journal of the American Chemical Society, 2021, 143, 5508-5518.	6.6	36
6	Catalytic Carbodiimide Guanylation by a Nucleophilic, High Spin Iron(II) Imido Complex. Journal of the American Chemical Society, 2021, 143, 5324-5329.	6.6	19
7	A Redoxâ€Active Tetrazineâ€Based Pincer Ligand for the Reduction of Nâ€Oxyanions Using a Redoxâ€Inert Metal. Chemistry - A European Journal, 2021, 27, 11676-11681.	1.7	7
8	Pincers with diverse donors and their interconversion: application to Ni(II). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1524-1529.	0.6	2
9	Hydrocarbon Oxidation by an Exposed, Multiply Bonded Iron(III) Oxo Complex. ACS Central Science, 2021, 7, 1751-1755.	5. 3	14
10	Bis-Spiro-Oxetane and Bis-Spiro-Tetrahydrofuran Pyrroline Nitroxide Radicals: Synthesis and Electron Spin Relaxation Studies. Journal of Organic Chemistry, 2021, 86, 13636-13643.	1.7	7
11	Chitosan as capping agent in a robust one-pot procedure for a magnetic catalyst synthesis. Carbohydrate Polymers, 2021, 269, 118267.	5.1	3
12	Nickel-mediated Nâ€"N bond formation and N ₂ O liberation <i>via</i> nitrogen oxyanion reduction. Chemical Science, 2021, 12, 10664-10672.	3.7	8
13	An Integrated View of Nitrogen Oxyanion Deoxygenation in Solution Chemistry and Electrospray Ion Production. Inorganic Chemistry, 2021, 60, 17241-17248.	1.9	3
14	Multi-state amine sensing by electron transfers in a BODIPY probe. Organic and Biomolecular Chemistry, 2020, 18, 431-440.	1.5	19
15	Structural and spectroscopic characterization of an Fe(VI) bis(imido) complex. Science, 2020, 370, 356-359.	6.0	40
16	Iron(II) Complexes of an Anionic Bis(ylide)diphenylborate Ligand. Inorganic Chemistry, 2020, 59, 17303-17309.	1.9	5
17	Stabilization of the Dinitrogen Analogue, Phosphorus Nitride. ACS Central Science, 2020, 6, 1572-1577.	5.3	16
18	Glucose Oxidase Immobilized on Magnetic Zirconia: Controlling Catalytic Performance and Stability. ACS Omega, 2020, 5, 12329-12338.	1.6	10

#	Article	IF	Citations
19	Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion–Anion Linkages. Journal of the American Chemical Society, 2020, 142, 2579-2591.	6.6	68
20	Supramolecular Approach to Electron Paramagnetic Resonance Distance Measurement of Spin-Labeled Proteins. Journal of Physical Chemistry B, 2020, 124, 3291-3299.	1.2	6
21	Elastomer based nanocomposites with reduced graphene oxide nanofillers allow for enhanced tensile and electrical properties. Journal of Polymer Research, 2020, 27, 1.	1.2	8
22	A Dimeric Hydride-Bridged Complex with Geometrically Distinct Iron Centers Giving Rise to an <i>S</i> = 3 Ground State. Journal of the American Chemical Society, 2019, 141, 11970-11975.	6.6	13
23	Strong π-Backbonding Enables Record Magnetic Exchange Coupling Through Cyanide. Journal of the American Chemical Society, 2019, 141, 17092-17097.	6.6	21
24	Magnetization Slow Dynamics in Ferrocenium Complexes. Chemistry - A European Journal, 2019, 25, 10625-10632.	1.7	20
25	Reactivity of an Unusual Divalent Chromium Aggregate Supported by a Multifunctional Bis(pyrazolate) Pincer Ligand. European Journal of Inorganic Chemistry, 2019, 2019, 1932-1940.	1.0	9
26	Stereoinversion of Unactivated Alcohols by Tethered Sulfonamides. Angewandte Chemie, 2019, 131, 1741-1745.	1.6	11
27	Thermally and Magnetically Robust Triplet Ground State Diradical. Journal of the American Chemical Society, 2019, 141, 4764-4774.	6.6	86
28	Linear Supramolecular Polymers Driven by Anion–Anion Dimerization of Difunctional Phosphonate Monomers Inside Cyanostar Macrocycles. Journal of the American Chemical Society, 2019, 141, 4980-4989.	6.6	57
29	Stereoinversion of Unactivated Alcohols by Tethered Sulfonamides. Angewandte Chemie - International Edition, 2019, 58, 1727-1731.	7.2	44
30	Phosphate–phosphate oligomerization drives higher order co-assemblies with stacks of cyanostar macrocycles. Chemical Science, 2018, 9, 2863-2872.	3.7	63
31	Host–Host Interactions Control Selfâ€assembly and Switching of Triple and Double Decker Stacks of Tricarbazole Macrocycles Coâ€assembled with antiâ€Electrostatic Bisulfate Dimers. Chemistry - A European Journal, 2018, 24, 9841-9852.	1.7	24
32	Biomimetic Desymmetrization of a Carboxylic Acid. Journal of the American Chemical Society, 2018, 140, 1998-2001.	6.6	37
33	Enantioselective Organocatalytic Amine-Isocyanate Capture-Cyclization: Regioselective Alkene lodoamination for the Synthesis of Chiral Cyclic Ureas. ACS Catalysis, 2018, 8, 11926-11931.	5.5	24
34	Zn ²⁺ Ion Surface Enrichment in Doped Iron Oxide Nanoparticles Leads to Charge Carrier Density Enhancement. ACS Omega, 2018, 3, 16328-16337.	1.6	13
35	Electrophile Recruitment as a Structural Element in Bisâ€Pyrazolate Pyridine Complex Aggregation. European Journal of Inorganic Chemistry, 2018, 2018, 5160-5166.	1.0	4
36	Seeking Redox Activity in a Tetrazinyl Pincer Ligand: Installing Zerovalent Cr and Mo. Inorganic Chemistry, 2018, 57, 12671-12682.	1.9	7

#	Article	IF	Citations
37	Facile Synthesis of Magnetically Recoverable Pd and Ru Catalysts for 4-Nitrophenol Reduction: Identifying Key Factors. ACS Omega, 2018, 3, 14717-14725.	1.6	20
38	Rotationally Free and Rigid Sublattices of the Single Crystal Perovskite CH ₃ NH ₃ PbBr ₃ (001): The Case of the Lattice Polar Liquid. Journal of Physical Chemistry C, 2018, 122, 25506-25514.	1.5	8
39	Probing Redox Noninnocence of Copper and Zinc Bisâ€pyridylpyrrolides. European Journal of Inorganic Chemistry, 2018, 2018, 4893-4904.	1.0	4
40	Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment. Inorganic Chemistry, 2018, 57, 6176-6185.	1.9	9
41	Programmed Negative Allostery with Guest-Selected Rotamers Control Anion–Anion Complexes of Stackable Macrocycles. Journal of the American Chemical Society, 2018, 140, 7773-7777.	6.6	19
42	Ion-Pair Oligomerization of Chromogenic Triangulenium Cations with Cyanostar-Modified Anions That Controls Emission in Hierarchical Materials. Journal of the American Chemical Society, 2017, 139, 6226-6233.	6.6	37
43	Synthesis and Electron Spin Relaxation of Tetracarboxylate Pyrroline Nitroxides. Journal of Organic Chemistry, 2017, 82, 1538-1544.	1.7	21
44	Enhancing the Catalytic Activity of Zn-Containing Magnetic Oxides in a Methanol Synthesis: Identifying the Key Factors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2285-2294.	4.0	17
45	Arrested α-hydride migration activates a phosphido ligand for C–H insertion. Chemical Communications, 2017, 53, 412-415.	2.2	18
46	Cyanide Ligand Assembly by Carbon Atom Transfer to an Iron Nitride. Journal of the American Chemical Society, 2017, 139, 14037-14040.	6.6	35
47	Deprotonation, Chloride Abstraction, and Dehydrohalogenation as Synthetic Routes to Bisâ€Pyrazolate Pyridyl Iron(II) Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 3999-4012.	1.0	19
48	Efficient Furfuryl Alcohol Synthesis from Furfural over Magnetically Recoverable Catalysts: Does the Catalyst Stabilizing Medium Matter?. ChemistrySelect, 2017, 2, 5485-5491.	0.7	16
49	Cr–Containing Magnetic Oxides in a Methanol Synthesis: Does Cr Ion Distribution Matter?. ChemistrySelect, 2017, 2, 6269-6276.	0.7	4
50	Room-Temperature Ring-Opening of Quinoline, Isoquinoline, and Pyridine with Low-Valent Titanium. Journal of the American Chemical Society, 2017, 139, 12804-12814.	6.6	24
51	Ligand Substituent Effects in Manganese Pyridinophane Complexes: Implications for Oxygen-Evolving Catalysis. Inorganic Chemistry, 2017, 56, 14315-14325.	1.9	22
52	Radical Cation and Neutral Radical of Aza-thia[7]helicene with SOMO–HOMO Energy Level Inversion. Journal of the American Chemical Society, 2016, 138, 7298-7304.	6.6	67
53	Medium-Ring Stereocontrol in the Temporary Silicon-Tethered Ring-Closing Metathesis Approach to the Synthesis of Polyketide Fragments. Synthesis, 2016, 48, 2402-2412.	1.2	8
54	Anions Stabilize Each Other inside Macrocyclic Hosts. Angewandte Chemie, 2016, 128, 14263-14268.	1.6	25

#	Article	IF	CITATIONS
55	Anions Stabilize Each Other inside Macrocyclic Hosts. Angewandte Chemie - International Edition, 2016, 55, 14057-14062.	7.2	115
56	Ru-Containing Magnetically Recoverable Catalysts: A Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols. ACS Applied Materials & Entry Interfaces, 2016, 8, 21285-21293.	4.0	51
57	Metal oxide–zeolite composites in transformation of methanol to hydrocarbons: do iron oxide and nickel oxide matter?. RSC Advances, 2016, 6, 75166-75177.	1.7	14
58	Tetrazine Assists Reduction of Water by Phosphines: Application in the Mitsunobu Reaction. Chemistry - A European Journal, 2016, 22, 13985-13998.	1.7	16
59	High-Spin Organic Diradical with Robust Stability. Journal of the American Chemical Society, 2016, 138, 9377-9380.	6.6	118
60	A high-yield synthesis and acid–base response of phosphate-templated [3]rotaxanes. Chemical Communications, 2016, 52, 13675-13678.	2.2	39
61	Extreme Stabilization and Redox Switching of Organic Anions and Radical Anions by Large-Cavity, CH Hydrogen-Bonding Cyanostar Macrocycles. Journal of the American Chemical Society, 2016, 138, 15057-15065.	6.6	53
62	A low spin manganese(<scp>iv</scp>) nitride single molecule magnet. Chemical Science, 2016, 7, 6132-6140.	3.7	112
63	Size-matched recognition of large anions by cyanostar macrocycles is saved when solvent-bias is avoided. Chemical Communications, 2016, 52, 8683-8686.	2.2	50
64	Synthesis of an Iron(II) Ethyl Complex Accompanied by Formation of an Unusual Dinitrogenâ€Ligated Iron(I) Hydride. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 45-48.	0.6	10
65	Styrene Aziridination by Iron(IV) Nitrides. Angewandte Chemie - International Edition, 2015, 54, 10600-10603.	7.2	55
66	Electrostatic and Allosteric Cooperativity in Ion-Pair Binding: A Quantitative and Coupled Experiment–Theory Study with Aryl–Triazole–Ether Macrocycles. Journal of the American Chemical Society, 2015, 137, 9746-9757.	6.6	69
67	Partial Nitrogen Atom Transfer: A New Synthetic Tool to Design Single-Molecule Magnets. Inorganic Chemistry, 2015, 54, 9075-9080.	1.9	20
68	Cyclo-P ₃ Complexes of Vanadium: Redox Properties and Origin of the ³¹ P NMR Chemical Shift. Journal of the American Chemical Society, 2015, 137, 15247-15261.	6.6	41
69	BrÃ, nsted Acid Catalyzed Phosphoramidic Acid Additions to Alkenes: Diastereo- and Enantioselective Halogenative Cyclizations for the Synthesis of $\langle i \rangle C \langle i \rangle$ - and $\langle i \rangle P \langle i \rangle$ -Chiral Phosphoramidates. Journal of the American Chemical Society, 2014, 136, 14734-14737.	6.6	83
70	Mechanistic Understanding of a Silver Pyridylpyrrolide as a Catalyst for 3 + 2 Cyclization of a Nitrile with Diazo Ester. Organometallics, 2014, 33, 1544-1552.	1.1	13
71	Probing the Steric and Electronic Characteristics of a New Bis-Pyrrolide Pincer Ligand. Inorganic Chemistry, 2014, 53, 1361-1369.	1.9	46
72	Synthesis and Oxidative Reactivity of 2,2′-Pyridylpyrrolide Complexes of Ni(II). Inorganic Chemistry, 2013, 52, 9511-9521.	1.9	18

#	Article	IF	Citations
73	Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers. Journal of Materials Chemistry A, 2013, 1, 1108-1116.	5.2	84
74	2,2′-Pyridylpyrrolide Ligand Redistribution Following Reduction. Inorganic Chemistry, 2013, 52, 5611-5619.	1.9	20
75	Formation and Reactivity of the Terminal Vanadium Nitride Functionality. European Journal of Inorganic Chemistry, 2013, 2013, 3916-3929.	1.0	26
76	An iridium–pyridylpyrrolide complex exhibiting reversible binding of H2. Dalton Transactions, 2012, 41, 9619.	1.6	15
77	Charge Injection and Transport in Metal-Containing Conducting Polymers: Spectroelectrochemical Mapping of Redox Activities. Chemistry of Materials, 2012, 24, 3650-3658.	3.2	28
78	Assessment of the Electronic Structure of 2,2′-Pyridylpyrrolides as Ligands. Inorganic Chemistry, 2011, 50, 8121-8131.	1.9	44
79	Redox and Lewis Acid Reactivity of Unsaturated Osll. European Journal of Inorganic Chemistry, 2010, 2010, 4790-4800.	1.0	26
80	Intermolecular C–H bond activation of benzene and pyridines by a vanadium(iii) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex. Chemical Science, 2010, 1, 351.	3.7	64
81	Catalytic Hydrosilylation of the Carbonyl Functionality via a Transient Nickel Hydride Complex. Organometallics, 2009, 28, 2234-2243.	1.1	121
82	Bridging the Common Molecules Collection and the Science Classroom: Attractive and Inquiry-Stimulating Reciprocal Net Learning Modules. Journal of Chemical Education, 2009, 86, 124.	1.1	0
83	Reactivity of the Radical NO with a Masked Form of 14 Valence Electron (PNP)Rh: Forming Rh(0, I or II)?. European Journal of Inorganic Chemistry, 2008, 2008, 4704-4709.	1.0	8
84	Chiral tetrathienylene: synthesis and X-ray structure. Journal of Sulfur Chemistry, 2008, 29, 425-432.	1.0	5
85	[(tBu2PCH2SiMe2)2N]Rhl? Rapidly Reversible Hâ^'C(sp3) and Hâ^'C(sp2) Bond Cleavage by Rhodium(l). Organometallics, 2008, 27, 166-168.	1.1	57
86	Reactivity of E™NO with an osmium polyhydride: Reductive elimination and reductive nitrosylation on the path from odd- to even-electron molecules. New Journal of Chemistry, 2007, 31, 838-840.	1.4	6
87	Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. Chemistry of Materials, 2007, 19, 3624-3632.	3.2	504
88	Triple Benzylic Dehydrogenation by Osmium in an Amide Ligand Environment. Organometallics, 2006, 25, 802-804.	1.1	46
89	Terminal Acetylenes React to Increase Unsaturation in [(tBu2PCH2SiMe2)2N]Re(H)4. Organometallics, 2004, 23, 4934-4943.	1.1	16
90	Amido/phosphine pincer hydrides of ruthenium. New Journal of Chemistry, 2003, 27, 263-273.	1.4	25

Maren Pink

#	Article	IF	CITATION
91	Preparation and properties of [NH2Et2][Mn10(OH)3(phth)9(bpy)6], a new decanuclear Mn(ii) compound with a variety of phthalate binding modes. Dalton Transactions, 2003, , 1121-1125.	1.6	33
92	Macrocyclic Metalloenediynes of Cu(II) and Zn(II):Â A Thermal Reactivity Comparison. Inorganic Chemistry, 2001, 40, 5878-5885.	1.9	19
93	Single-Molecule Magnets:Â Ligand-Induced Core Distortion and Multiple Jahnâ^Teller Isomerism in [Mn12O12(O2CMe)8(O2PPh2)8(H2O)4]. Journal of the American Chemical Society, 2001, 123, 9914-9915.	6.6	141