
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1940151/publications.pdf Version: 2024-02-01



YI-LIN LI

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ligand design strategy to construct metal-organic frameworks with high-density carboxylic groups and high protonic conduction. Solid State Sciences, 2022, 123, 106792.                     | 3.2  | 4         |
| 2  | Proton conductive metal–organic frameworks based on main-group metals. Coordination Chemistry<br>Reviews, 2022, 452, 214301.                                                                | 18.8 | 36        |
| 3  | Water-assisted proton conduction in a highly stable 3D lead(II) MOF constructed by imidazole dicarboxylate and oxalate ligands. Journal of Solid State Chemistry, 2022, 307, 122746.        | 2.9  | 3         |
| 4  | Water-mediated proton conductive properties of three water-stable metal-organic frameworks constructed by pyromellitic acid. Journal of Solid State Chemistry, 2022, 307, 122874.           | 2.9  | 8         |
| 5  | Proton Conductive Lanthanide-Based Metal–Organic Frameworks: Synthesis Strategies, Structural<br>Features, and Recent Progress. Topics in Current Chemistry, 2022, 380, 9.                  | 5.8  | 23        |
| 6  | Proton conduction in two highly stable cadmium(II) metal-organic frameworks built by substituted imidazole dicarboxylates. Journal of Solid State Chemistry, 2022, 309, 122948.             | 2.9  | 11        |
| 7  | Metal@COFs Possess High Proton Conductivity with Mixed Conducting Mechanisms. ACS Applied<br>Materials & Interfaces, 2022, 14, 15687-15696.                                                 | 8.0  | 21        |
| 8  | High Protonic Conductivity of Three Highly Stable Nanoscale Hafnium(IV) Metal–Organic Frameworks<br>and Their Imidazole-Loaded Products. Inorganic Chemistry, 2022, 61, 4938-4947.          | 4.0  | 27        |
| 9  | Two stable phenyl acyl thiourea carboxylate-based MOFs: Syntheses, crystal structures and proton conductive properties. Journal of Solid State Chemistry, 2022, 311, 123154.                | 2.9  | 13        |
| 10 | A cobalt(II) complex based on imidazole dicarboxylate ligand with high proton conductivity.<br>Inorganica Chimica Acta, 2022, 539, 121006.                                                  | 2.4  | 1         |
| 11 | Comparative Studies on the Proton Conductivities of Hafnium-Based Metal–Organic Frameworks and<br>Related Chitosan or Nafion Composite Membranes. Inorganic Chemistry, 2022, 61, 9564-9579. | 4.0  | 18        |
| 12 | Recent advances of organometallic complexes for rechargeable batteries. Coordination Chemistry<br>Reviews, 2021, 429, 213650.                                                               | 18.8 | 41        |
| 13 | Bi( <scp>iii</scp> ) MOFs: syntheses, structures and applications. Inorganic Chemistry Frontiers, 2021, 8, 572-589.                                                                         | 6.0  | 32        |
| 14 | Two imidazole multicarboxylate-based MOFs: syntheses, structures and proton conductive properties.<br>New Journal of Chemistry, 2021, 45, 16971-16977.                                      | 2.8  | 4         |
| 15 | Proton conductive metal sulfonate frameworks. Coordination Chemistry Reviews, 2021, 431, 213747.                                                                                            | 18.8 | 63        |
| 16 | Proton conductive N-heterocyclic metal–organic frameworks. Coordination Chemistry Reviews, 2021,<br>432, 213754.                                                                            | 18.8 | 51        |
| 17 | High and Tunable Proton Conduction in Six 3D-Substituted Imidazole Dicarboxylate-Based<br>Lanthanide–Organic Frameworks. Inorganic Chemistry, 2021, 60, 10808-10818.                        | 4.0  | 19        |
| 18 | High Proton Conduction in Two Highly Water-Stable Lanthanide Coordination Polymers from a<br>Triazole Multicarboxylate Ligand. Inorganic Chemistry, 2021, 60, 13242-13251.                  | 4.0  | 9         |

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Water-assisted proton conductivity of two lanthanide-based supramolecules. New Journal of Chemistry, 2021, 45, 12213-12218.                                           | 2.8  | 2         |
| 20 | High Proton Conduction in Three Highly Water-Stable Hydrogen-Bonded Ferrocene-Based Phenyl<br>Carboxylate Frameworks. Inorganic Chemistry, 2021, 60, 19278-19286.     | 4.0  | 16        |
| 21 | Crystalline hydrogen-bonded supramolecular frameworks (HSFs) as new class of proton conductive materials. Applied Surface Science, 2020, 504, 144484.                 | 6.1  | 29        |
| 22 | Proton conductive carboxylate-based metal–organic frameworks. Coordination Chemistry Reviews, 2020, 403, 213100.                                                      | 18.8 | 222       |
| 23 | Three substituted imidazole dicarboxylate-based metal(II) supramolecules for proton conduction.<br>Journal of Solid State Chemistry, 2020, 282, 121129.               | 2.9  | 5         |
| 24 | Nanoflower-like MoS2 grown on porous TiO2 with enhanced hydrogen evolution activity. Journal of<br>Alloys and Compounds, 2020, 821, 153203.                           | 5.5  | 21        |
| 25 | Proton onductive 3D Ln <sup>III</sup> Metal–Organic Frameworks for Formic Acid Impedance Sensing.<br>Chemistry - an Asian Journal, 2020, 15, 182-190.                 | 3.3  | 38        |
| 26 | Proton conductive covalent organic frameworks. Coordination Chemistry Reviews, 2020, 422, 213465.                                                                     | 18.8 | 129       |
| 27 | Polyoxometalate-based hydrogen-bonded organic frameworks as a new class of proton conducting materials. CrystEngComm, 2020, 22, 8161-8165.                            | 2.6  | 11        |
| 28 | Proton conductive properties of two Mn/Pb complexes constructed by difluorophenyl imidazole dicarboxylate. Inorganica Chimica Acta, 2020, 511, 119800.                | 2.4  | 8         |
| 29 | Proton conductive Zr-based MOFs. Inorganic Chemistry Frontiers, 2020, 7, 3765-3784.                                                                                   | 6.0  | 80        |
| 30 | Proton conduction in two hydrogen-bonded supramolecular lanthanide complexes. New Journal of Chemistry, 2020, 44, 10562-10568.                                        | 2.8  | 19        |
| 31 | Proton conduction in two Cu/Zn dimer-based hydrogen-bonded supramolecular frameworks from imidazole multi-carboxylate. New Journal of Chemistry, 2020, 44, 8098-8105. | 2.8  | 16        |
| 32 | Proton conduction in a highly stable Ball coordination polymer constructed by p-phthalic acid.<br>Polyhedron, 2020, 187, 114642.                                      | 2.2  | 3         |
| 33 | A Comparative Study of Proton Conduction Between a 2D Zinc(II) MOF and Its Corresponding Organic<br>Ligand. Inorganic Chemistry, 2020, 59, 4781-4789.                 | 4.0  | 72        |
| 34 | Structural Effect on Proton Conduction in Two Highly Stable Disubstituted Ferrocenyl Carboxylate<br>Frameworks. Inorganic Chemistry, 2020, 59, 10243-10252.           | 4.0  | 21        |
| 35 | Water-mediated proton conduction in two stable fluorophenyl imidazole dicarboxylate-based cadmium(II) complexes. Transition Metal Chemistry, 2020, 45, 267-278.       | 1.4  | 8         |
| 36 | High protonic conduction in two metal–organic frameworks containing high-density carboxylic<br>groups. New Journal of Chemistry, 2020, 44, 2741-2748.                 | 2.8  | 33        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Two high tunable proton-conducting cobalt(II) complexes derived from imidazole<br>multi-carboxylate-based ligand. Journal of Solid State Chemistry, 2020, 286, 121313.                                                | 2.9 | 5         |
| 38 | Ultrahigh Proton Conduction in Two Highly Stable Ferrocenyl Carboxylate Frameworks. ACS Applied<br>Materials & Interfaces, 2019, 11, 31018-31027.                                                                     | 8.0 | 66        |
| 39 | CuS Nanosheets Decorated with CoS <sub>2</sub> Nanoparticles as an Efficient Electrocatalyst for<br>Enhanced Hydrogen Evolution at All pH Values. ACS Sustainable Chemistry and Engineering, 2019, 7,<br>14016-14022. | 6.7 | 70        |
| 40 | Two Highly Stable Proton Conductive Cobalt(II)–Organic Frameworks as Impedance Sensors for<br>Formic Acid. Chemistry - A European Journal, 2019, 25, 14108-14116.                                                     | 3.3 | 55        |
| 41 | Water-mediated proton conduction for a highly stable strontium-organic framework from imidazole multi-carboxylate ligand. Polyhedron, 2019, 169, 1-7.                                                                 | 2.2 | 14        |
| 42 | A path to improve proton conductivity: from a 3D hydrogen-bonded organic framework to a 3D copper-organic framework. New Journal of Chemistry, 2019, 43, 10637-10644.                                                 | 2.8 | 29        |
| 43 | Enhancement of Aquaâ€Ammonia Vapor on Proton Conduction for Two Waterâ€Tolerant Complicated<br>Copper Cluster Compounds. ChemistrySelect, 2019, 4, 3465-3473.                                                         | 1.5 | 14        |
| 44 | Impressive Proton Conductivities of Two Highly Stable Metal–Organic Frameworks Constructed by<br>Substituted Imidazoledicarboxylates. Inorganic Chemistry, 2019, 58, 5173-5182.                                       | 4.0 | 60        |
| 45 | Water-assisted proton conductivity of two highly stable imidazole multi-carboxylate-based MOFs.<br>New Journal of Chemistry, 2019, 43, 4859-4866.                                                                     | 2.8 | 28        |
| 46 | Identification performance of two luminescent lanthanide–organic frameworks. Polyhedron, 2019,<br>161, 40-46.                                                                                                         | 2.2 | 7         |
| 47 | Proton conduction and impedance sensing of a highly stable copper–organic framework from<br>imidazole dicarboxylate. Polyhedron, 2019, 158, 377-385.                                                                  | 2.2 | 21        |
| 48 | A Highly Proton-Conductive 3D Ionic Cadmium–Organic Framework for Ammonia and Amines<br>Impedance Sensing. ACS Applied Materials & Interfaces, 2019, 11, 1713-1722.                                                   | 8.0 | 95        |
| 49 | Enhancing proton conductivity of a highly water stable 3D Sr(II) metal-organic framework by exposure to aqua-ammonia vapor. Journal of Alloys and Compounds, 2018, 750, 895-901.                                      | 5.5 | 54        |
| 50 | Two water-stable 3D supramolecules supported by hydrogen bonds for proton conduction.<br>Polyhedron, 2018, 148, 100-108.                                                                                              | 2.2 | 35        |
| 51 | A Comparative Investigation of Proton Conductivities for Two Metalâ^'Organic Frameworks under<br>Water and Aqua-Ammonia Vapors. Inorganic Chemistry, 2018, 57, 1474-1482.                                             | 4.0 | 69        |
| 52 | Two luminescent transition-metal–organic frameworks with a predesigned ligand as highly sensitive and selective iron( <scp>iii</scp> ) sensors. New Journal of Chemistry, 2018, 42, 6839-6847.                        | 2.8 | 34        |
| 53 | Iron( <scp>iii</scp> ) identification and proton conduction of a luminescent cadmium–organic<br>framework. New Journal of Chemistry, 2018, 42, 20197-20204.                                                           | 2.8 | 24        |
| 54 | A Highly Stable Twoâ€Dimensional Copper(II) Organic Framework for Proton Conduction and Ammonia<br>Impedance Sensing. Chemistry - A European Journal, 2018, 24, 10829-10839.                                          | 3.3 | 103       |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enhancing Proton Conductivity of a 3D Metal–Organic Framework by Attaching Guest<br>NH <sub>3</sub> Molecules. Inorganic Chemistry, 2018, 57, 11560-11568.                                                                                               | 4.0 | 60        |
| 56 | A Water-Stable Proton-Conductive Barium(II)-Organic Framework for Ammonia Sensing at High<br>Humidity. Inorganic Chemistry, 2018, 57, 7104-7112.                                                                                                         | 4.0 | 80        |
| 57 | Solvothermal syntheses, crystal structures and properties of four polymers built by p-methoxyphenyl imidazole dicarboxylates. Supramolecular Chemistry, 2017, 29, 237-247.                                                                               | 1.2 | 4         |
| 58 | Effective Approach to Promoting the Proton Conductivity of Metal–Organic Frameworks by Exposure<br>to Aqua–Ammonia Vapor. ACS Applied Materials & Interfaces, 2017, 9, 25082-25086.                                                                      | 8.0 | 86        |
| 59 | One three-dimensional manganese(II)-organic framework bearing hydroxylphenyl imidazole<br>dicarboxylate ligand. Inorganic and Nano-Metal Chemistry, 2017, 47, 298-301.                                                                                   | 1.6 | 0         |
| 60 | Luminescent sensing of Fe <sup>3+</sup> and K <sup>+</sup> by three novel imidazole dicarboxylate-based MOFs. Supramolecular Chemistry, 2017, 29, 193-204.                                                                                               | 1.2 | 10        |
| 61 | One Novel 2D Manganese(II) Coordination Polymer From Carboxylphenyl Imidazole Dicarboxylate:<br>Synthesis, Crystal Structure, and Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and<br>Nano Metal Chemistry, 2016, 46, 1637-1641.    | 0.6 | 1         |
| 62 | Three metal–organic frameworks constructed from imidazole-based multi-carboxylate ligands:<br>Syntheses, structures and photoluminescent properties. Polyhedron, 2016, 117, 202-208.                                                                     | 2.2 | 15        |
| 63 | Syntheses, structures and properties of four metal-organic frameworks from chlorophenyl imidazole dicarboxylates. Journal of Coordination Chemistry, 2016, 69, 2231-2246.                                                                                | 2.2 | 5         |
| 64 | A luminescent dimer as a turn-off sensor for both nitrite anion and ferric cation. Supramolecular<br>Chemistry, 2016, 28, 204-211.                                                                                                                       | 1.2 | 7         |
| 65 | A phenyl imidazole dicarboxylate-based 3D terbium–organic framework for selective sensing of<br>nitrobenzene. Supramolecular Chemistry, 2016, 28, 640-646.                                                                                               | 1.2 | 8         |
| 66 | A New 3D Mn(II) Coordination Polymer Built by 2-( <i>m</i> -Methylphenyl)-Imidazole Dicarboxylate<br>Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45,<br>1627-1631.                                     | 0.6 | 1         |
| 67 | A 1D Helical Ni(II) Coordination Polymer Based on Butylphenyl Imidazole Dicarboxylate. Synthesis and<br>Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 719-724.                                                             | 0.6 | 0         |
| 68 | Two dimethylphenyl imidazole dicarboxylate-based lanthanide metal–organic frameworks for<br>luminescence sensing of benzaldehyde. Dalton Transactions, 2015, 44, 4362-4369.                                                                              | 3.3 | 95        |
| 69 | Two Cadmium(II) Coordination Polymers Based on 3,4-Methylenedioxyphenyl Imidazole Dicarboxylate:<br>Syntheses, Characterizations and Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and<br>Nano Metal Chemistry, 2015, 45, 1607-1615. | 0.6 | 0         |
| 70 | Three different structural lead(II) polymers constructed from newly designed<br>chlorophenyl-imidazole dicarboxylate ligands. Journal of Coordination Chemistry, 2015, 68, 2507-2519.                                                                    | 2.2 | 6         |
| 71 | Syntheses, structures and thermal properties of four manganese coordination polymers from imidazole-based multi-carboxylates. Polyhedron, 2015, 92, 137-146.                                                                                             | 2.2 | 16        |
| 72 | Preparations and characterizations of two MOFs constructed with hydroxylphenyl imidazole<br>dicarboxylate. Chinese Chemical Letters, 2015, 26, 1059-1064.                                                                                                | 9.0 | 2         |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Syntheses, structural diversity and properties of three coordination polymers built by chlorophenyl imidazole dicarboxylate. Supramolecular Chemistry, 2015, 27, 141-150.                                                                                                | 1.2 | 4         |
| 74 | Two tetranuclear Ni(II) complexes from substituted imidazole dicarboxylates: syntheses, structures, thermal and magnetic properties. Supramolecular Chemistry, 2015, 27, 613-619.                                                                                        | 1.2 | 3         |
| 75 | Construction and Properties of Two MOFs Based on 2â€ <i>p</i> â€Bromophenyl Imidazole Dicarboxylate.<br>Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 809-813.                                                                                          | 1.2 | 5         |
| 76 | Pyridine effected tunable luminescence properties of a 1D cadmium(II) polymer with tetranuclear second building units. Supramolecular Chemistry, 2015, 27, 268-273.                                                                                                      | 1.2 | 2         |
| 77 | Two Manganese(II) Supramolecular Complexes Based on Imidazole Dicarboxylates: Syntheses, Crystal<br>Structures, and Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal<br>Chemistry, 2014, 44, 1041-1049.                                  | 0.6 | 3         |
| 78 | Five metal–organic frameworks from 3,4-dimethylphenyl substituted imidazole dicarboxylate:<br>syntheses, structures and properties. Dalton Transactions, 2014, 43, 3704-3715.                                                                                            | 3.3 | 33        |
| 79 | Four metal–organic frameworks constructed with hydroxylphenyl imidazole dicarboxylate:<br>Syntheses, crystal structures and properties. Polyhedron, 2014, 83, 77-87.                                                                                                     | 2.2 | 13        |
| 80 | Zinc(II) and manganese(II) coordination polymers constructed by 2-naphthyl imidazole dicarboxylate:<br>syntheses, structures and properties. Supramolecular Chemistry, 2014, 26, 338-345.                                                                                | 1.2 | 3         |
| 81 | Selective pyridine recognition by an imidazole dicarboxylate-based 3D cadmium( <scp>ii</scp> ) MOF.<br>RSC Advances, 2014, 4, 33537-33540.                                                                                                                               | 3.6 | 18        |
| 82 | Extended Structures Supported by Hydrogen Bonding and π-π Interaction: Syntheses and<br>Characterizations of Two Complexes with Phenyl Imidazole Dicarboxylates. Synthesis and Reactivity in<br>Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 1299-1305. | 0.6 | 2         |
| 83 | Three transition-metal polymers from imidazole dicarboxylates-bearing methoxyphenyl groups:<br>syntheses, crystal structures and properties. Supramolecular Chemistry, 2014, 26, 346-357.                                                                                | 1.2 | 9         |
| 84 | Assembly of three cadmium polymers from a newly designed imidazole multi-carboxylate ligand.<br>Inorganic Chemistry Communication, 2013, 35, 351-354.                                                                                                                    | 3.9 | 15        |
| 85 | Syntheses, crystal structures and thermal properties of six coordination polymers based on 2-(p-methylphenyl)-imidazole dicarboxylate. Dalton Transactions, 2013, 42, 14776.                                                                                             | 3.3 | 15        |
| 86 | Solvothermal synthesis, crystal structure and magnetic properties of a 3D Coll framework based on 2-p-isopropylphenyl imidazole dicarboxylate. Inorganic Chemistry Communication, 2013, 36, 86-89.                                                                       | 3.9 | 8         |
| 87 | Construction of a series of coordination polymers from three imidazole-based multi-carboxylate ligands. Dalton Transactions, 2013, 42, 14268.                                                                                                                            | 3.3 | 36        |
| 88 | Assembly of a series of MOFs based on the 2-(m-methoxyphenyl)imidazole dicarboxylate ligand. Dalton<br>Transactions, 2013, 42, 4613.                                                                                                                                     | 3.3 | 30        |
| 89 | Construction and Properties of Six Metal–Organic Frameworks Based on the Newly Designed<br>2-( <i>p</i> -Bromophenyl)-Imidazole Dicarboxylate Ligand. Crystal Growth and Design, 2013, 13, 367-376.                                                                      | 3.0 | 77        |
| 90 | MOFs constructed with the newly designed imidazole dicarboxylate bearing a 2-position aromatic<br>substituent: hydro(solvo)thermal syntheses, crystal structures and properties. Dalton Transactions,<br>2013, 42, 1715-1725.                                            | 3.3 | 39        |

| #   | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A Novel 3-D Cobalt-Organic Framework Constructed by 2-Ethyl-1H-imidazole-4,5-dicarboxylic Acid and<br>4,4′-Bipyridine. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43,<br>1458-1464.                                  | 0.6 | 3         |
| 92  | One unprecedented 3-D strontium–organic framework constructed from<br>2-(3,4-methylenedioxyphenyl)-imidazole dicarboxylate and water ligands. Inorganic Chemistry<br>Communication, 2013, 34, 27-29.                                                            | 3.9 | 3         |
| 93  | Construction of transition-metal coordination polymers using multifunctional imidazole dicarboxylates as spacers. CrystEngComm, 2013, 15, 4885.                                                                                                                 | 2.6 | 30        |
| 94  | Two Novel Supramolecular Complexes Built by 2-propyl or 2-p-methoxyphenyl Imidazole Dicarboxylate<br>Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43,<br>203-210.                                             | 0.6 | 4         |
| 95  | A series of lanthanide-organic frameworks constructed by 2-methyl imidazole dicarboxylate and oxalate: synthesis, structures, and properties. Journal of Coordination Chemistry, 2012, 65, 1724-1739.                                                           | 2.2 | 12        |
| 96  | The Construction of a 3D Pr(III) Coordination Polymer Based on 2-Methyl Imidazole-4,5-dicarboxylate and Oxalate Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 981-986.                                     | 0.6 | 4         |
| 97  | Syntheses, Crystal Structures, and Properties of Three Co(II) Supramolecules Constructed From<br>Phenyl Imidazole Dicarboxylates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal<br>Chemistry, 2012, 42, 1204-1210.                       | 0.6 | 14        |
| 98  | Assembly of five metal-organic frameworks based on 2-p-methoxyphenyl-1H-imidazole-4,5-dicarboxylate.<br>Inorganica Chimica Acta, 2012, 392, 16-24.                                                                                                              | 2.4 | 13        |
| 99  | Design and construction of six metal–organic frameworks with<br>2-p-methoxyphenyl-1H-imidazole-4,5-dicarboxylate. CrystEngComm, 2012, 14, 4357.                                                                                                                 | 2.6 | 29        |
| 100 | Two Unprecedented Transition-Metal–Organic Frameworks Showing One Dimensional-Hexagonal<br>Channel Open Network and Two-Dimensional Sheet Structures. Crystal Growth and Design, 2012, 12,<br>1091-1094.                                                        | 3.0 | 51        |
| 101 | Metal–organic frameworks constructed from imidazole dicarboxylates bearing aromatic substituents at the 2-position. CrystEngComm, 2012, 14, 7382.                                                                                                               | 2.6 | 48        |
| 102 | Two unprecedented strontium(ii) and cadmium(ii) MOFs constructed from 2-naphthyl imidazole<br>dicarboxylate ligand. CrystEngComm, 2012, 14, 4955.                                                                                                               | 2.6 | 27        |
| 103 | Syntheses, Crystal Structures, and Properties of Four Complexes Constructed From<br>2-Propyl-1H-Imidazole-4,5- Dicarboxylic Acid. Synthesis and Reactivity in Inorganic, Metal Organic, and<br>Nano Metal Chemistry, 2012, 42, 336-344.                         | 0.6 | 10        |
| 104 | Two Manganese(II) and Zinc(II) Coordination Polymers Constructed From Imidazole Dicarboxylates:<br>Synthesis, Crystal Structures, and Thermal Properties. Synthesis and Reactivity in Inorganic, Metal<br>Organic, and Nano Metal Chemistry, 2012, 42, 402-407. | 0.6 | 6         |
| 105 | Assembly of three 3-D MOFs from 2-phenyl-4,5-imidazole dicarboxylate and oxalate. Journal of Coordination Chemistry, 2012, 65, 1221-1231.                                                                                                                       | 2.2 | 10        |
| 106 | Four cadmium(II) polymeric frameworks constructed by 2-methyl or 2-ethyl imidazole dicarboxylates.<br>Inorganica Chimica Acta, 2012, 384, 352-362.                                                                                                              | 2.4 | 37        |
| 107 | 2-Phenyl-4,5-imidazole dicarboxylate-based metal–organic frameworks assembled under<br>hydro(solvo)thermal conditions. CrystEngComm, 2011, 13, 4895.                                                                                                            | 2.6 | 67        |
| 108 | Ligand-Directed Assembly of a Series of Complexes Bearing Thiourea-Based Carboxylates. Crystal<br>Growth and Design, 2011, 11, 5241-5252.                                                                                                                       | 3.0 | 13        |

| #   | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Synthesis, Crystal Structure, and Magnetic Properties of a Gd(III) Dimer Bearing Thourea-based<br>Carboxylate Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry,<br>2011, 41, 363-368.                                                    | 0.6 | 4         |
| 110 | Two 3-D metal-organic frameworks constructed by 2-methyl or 2-ethyl imidazole dicarboxylates.<br>Journal of Coordination Chemistry, 2011, 64, 2554-2564.                                                                                                                       | 2.2 | 15        |
| 111 | Three main group metal coordination polymers built by 2-propyl-1H-imidazole-4,5-dicarboxylate.<br>Inorganica Chimica Acta, 2011, 377, 42-49.                                                                                                                                   | 2.4 | 21        |
| 112 | An unprecedented 1-D mixed-valence Cu(II)/Cu(I) metal-organic framework bearing 2-phenyl imidazole dicarboxylates. Inorganic Chemistry Communication, 2011, 14, 1432-1435.                                                                                                     | 3.9 | 42        |
| 113 | Syntheses and structural analyses of four isostructural lanthanide dimers derived from thiourea-based carboxylato ligands. Journal of Molecular Structure, 2011, 994, 125-130.                                                                                                 | 3.6 | 7         |
| 114 | Three main group metal coordination polymers bearing imidazole-based dicarboxylates:<br>Hydro(solvo)thermal syntheses, crystal structures and properties. Polyhedron, 2011, 30, 1-8.                                                                                           | 2.2 | 41        |
| 115 | Synthesis, Crystal Structures, and Thermal Properties of Two Ni(II) Supramolecules Constructed from<br>Imidazole Dicarboxylates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal<br>Chemistry, 2011, 41, 1039-1045.                                       | 0.6 | 6         |
| 116 | A Novel Manganese(II) Coordination Polymer Built by Thiourea-Based Carboxylate Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 958-962.                                                                                      | 0.6 | 5         |
| 117 | Syntheses, structures, fluorescence and thermal properties of three lanthanide coordination polymers built by N-benzoyl-N′-(4-benzoxy)thiourea. Journal of Luminescence, 2010, 130, 2192-2200.                                                                                 | 3.1 | 15        |
| 118 | Syntheses, characterizations and crystal structures of four zinc(II) and cadmium(II) complexes constructed by ligand bearing poly-coordination atoms. Inorganica Chimica Acta, 2010, 363, 2616-2623.                                                                           | 2.4 | 12        |
| 119 | A Novel 2D Coordination Polymer Constructed from Left- and Right-handed Helical Chains and<br>4,4′-bipyridine Bridges. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry,<br>2010, 40, 734-738.                                                   | 0.6 | 12        |
| 120 | Zinc(II) and lead(II) coordination polymers built by 3-(4-carboxyphenylhydrazono)pentane-2,4-dione.<br>Journal of Coordination Chemistry, 2010, 63, 3413-3422.                                                                                                                 | 2.2 | 11        |
| 121 | Four Novel Frameworks Built by Imidazole-Based Dicarboxylate Ligands: Hydro(Solvo)thermal Synthesis, Crystal Structures, and Properties. Inorganic Chemistry, 2010, 49, 3776-3788.                                                                                             | 4.0 | 140       |
| 122 | One Chiral and Two Achiral 3-D Coordination Polymers Constructed by 2-Phenyl Imidazole<br>Dicarboxylate. Crystal Growth and Design, 2010, 10, 4050-4059.                                                                                                                       | 3.0 | 81        |
| 123 | An unprecedented 2-D cluster polymer constructed from unique mixed-valence CuI6CuII6 subunits.<br>Dalton Transactions, 2010, 39, 5611.                                                                                                                                         | 3.3 | 13        |
| 124 | A heterotrinuclear and a polynuclear complex constructed from a ferrocenyl carboxylate and an<br>N-containing ligand: Synthesis, crystal structures and electrochemical properties. Inorganica Chimica<br>Acta, 2009, 362, 3104-3108.                                          | 2.4 | 7         |
| 125 | Synthesis, structure and electrochemical properties of a zinc(II) coordination polymer based on ferrocenyl-substituted carboxylate and <b> <i>bis</i> </b> (benzimidazolyl)pentane ligands. Journal of Coordination Chemistry, 2008, 61, 464-471.                              | 2.2 | 10        |
| 126 | Synthesis, Crystal Structures and Electrochemical Properties of Two Zn(II) Complexes Constructed<br>from Ferrocenyl‧ubstituted Carboxylate and 2,2′â€Bipyridine Ligands. Synthesis and Reactivity in<br>Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 267-273. | 0.6 | 1         |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Tetrametallic macrocyclic frameworks constructed from ferrocenedicarboxylato and 2,2′-bipyridine:<br>synthesis, molecular structures and characteristics. Journal of Organometallic Chemistry, 2004, 689,<br>1218-1229.             | 1.8 | 69        |
| 128 | A novel helical chain zinc(II) coordination polymer derived from both ferrocenecarboxylato and<br>bibenzimidazolyl ligands: synthesis, crystal structure and properties. Journal of Molecular<br>Structure, 2004, 694, 179-183.     | 3.6 | 26        |
| 129 | Synthesis, Crystal Structure and Thermal Properties of a Novel Ferrocenecarboxylato-Bridged Zinc(II)<br>Dimer [Zn2(Aµ-OOCFc)4(3-PyCOOCH3)2]. Journal of Coordination Chemistry, 2003, 56, 877-884.                                  | 2.2 | 13        |
| 130 | Novel Pb(II), Zn(II), and Cd(II) Coordination Polymers Constructed from Ferrocenyl-Substituted Carboxylate and Bipyridine-Based Ligands. Inorganic Chemistry, 2003, 42, 4995-5004.                                                  | 4.0 | 88        |
| 131 | Self-Assembly of a Series of Novel Metalâ^'Organic Compounds Containing Ferrocenecarboxylate<br>Components. Inorganic Chemistry, 2003, 42, 3501-3508.                                                                               | 4.0 | 75        |
| 132 | Synthesis, Crystal Structures, and Magnetic Properties of Three Novel Ferrocenecarboxylato-Bridged<br>Lanthanide Dimers. Inorganic Chemistry, 2003, 42, 428-435.                                                                    | 4.0 | 144       |
| 133 | Versatile coordination patterns in the reaction system of N-benzoyl-N′-(2-pyridyl)thiourea with CuCl2.<br>Their reaction conditions, systematic isolation and crystal structures. New Journal of Chemistry,<br>2002, 26, 1629-1633. | 2.8 | 31        |
| 134 | Photolysis of diacylferrocenes and their photo-ligand exchange reactions with 1,10-phenanthroline.<br>Inorganica Chimica Acta, 1997, 261, 121-127.                                                                                  | 2.4 | 18        |
| 135 | Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands. Chinese Physics B, O, , .                                                                                                                   | 1.4 | 4         |
| 136 | Unique protonconduction 3D Zn <sup>II</sup> metal organic framework exposure to aquaammonia vapor to enhance conductivity. New Journal of Chemistry, 0, , .                                                                         | 2.8 | 0         |