Kodi S Ravichandran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1940011/publications.pdf

Version: 2024-02-01

137 papers 18,662 citations

64 h-index

16451

131 g-index

142 all docs 142 docs citations

times ranked

142

22711 citing authors

#	Article	IF	CITATIONS
1	Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annual Review of Neuroscience, 2022, 45, 177-198.	10.7	2
2	Endothelial pannexin-1 channels modulate macrophage and smooth muscle cell activation in abdominal aortic aneurysm formation. Nature Communications, 2022, 13, 1521.	12.8	27
3	Live cell tracking of macrophage efferocytosis during <i>Drosophila</i> embryo development in vivo. Science, 2022, 375, 1182-1187.	12.6	30
4	Pannexin 1 drives efficient epithelial repair after tissue injury. Science Immunology, 2022, 7, eabm4032.	11.9	10
5	Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature, 2022, 606, 776-784.	27.8	86
6	Drugging the efferocytosis process: concepts and opportunities. Nature Reviews Drug Discovery, 2022, 21, 601-620.	46.4	91
7	ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels. ELife, 2021, 10,	6.0	50
8	Phagocytosis: Sweet Repulsions via the Glycocalyx. Current Biology, 2021, 31, R20-R22.	3.9	6
9	Putting the brakes on phagocytosis: "don'tâ€eatâ€me―signaling in physiology and disease. EMBO Reports, 2021, 22, e52564.	4.5	43
10	Efferocytosis by Paneth cells within the intestine. Current Biology, 2021, 31, 2469-2476.e5.	3.9	15
11	Deacetylation as a receptor-regulated direct activation switch for pannexin channels. Nature Communications, 2021, 12, 4482.	12.8	12
12	ELMO1 signaling is a promoter of osteoclast function and bone loss. Nature Communications, 2021, 12, 4974.	12.8	16
13	Microbes exploit death-induced nutrient release by gut epithelial cells. Nature, 2021, 596, 262-267.	27.8	44
14	Pannexin 1 channels facilitate communication between TÂcells to restrict the severity of airway inflammation. Immunity, 2021, 54, 1715-1727.e7.	14.3	27
15	A20 deficiency in myeloid cells protects mice from diet-induced obesity and insulin resistance due to increased fatty acid metabolism. Cell Reports, 2021, 36, 109748.	6.4	14
16	OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nature Communications, 2021, 12, 5913.	12.8	21
17	Pannexin 1 channels in renin-expressing cells influence renin secretion and blood pressureÂhomeostasis. Kidney International, 2020, 98, 630-644.	5.2	17
18	Metabolites released from apoptotic cells act as tissue messengers. Nature, 2020, 580, 130-135.	27.8	266

#	Article	IF	CITATIONS
19	Astrocytic trans-Differentiation Completes a Multicellular Paracrine Feedback Loop Required for Medulloblastoma Tumor Growth. Cell, 2020, 180, 502-520.e19.	28.9	99
20	Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nature Communications, 2019, 10, 4456.	12.8	43
21	Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. Immunity, 2019, 50, 1149-1162.	14.3	223
22	Epithelial HMGB1 Delays Skin Wound Healing and Drives Tumor Initiation by Priming Neutrophils for NET Formation. Cell Reports, 2019, 29, 2689-2701.e4.	6.4	39
23	Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway. Nature Cell Biology, 2019, 21, 1532-1543.	10.3	61
24	A noncanonical role for the engulfment gene ELMO1 in neutrophils that promotes inflammatory arthritis. Nature Immunology, 2019, 20, 141-151.	14.5	30
25	Rethinking Phagocytes: Clues from the Retina and Testes. Trends in Cell Biology, 2018, 28, 317-327.	7.9	43
26	CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clinical Cancer Research, 2018, 24, 1415-1425.	7.0	73
27	Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circulation Research, 2018, 122, 606-615.	4.5	76
28	Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature, 2018, 563, 714-718.	27.8	220
29	Macrophages regulate the clearance of living cells by calreticulin. Nature Communications, 2018, 9, 4644.	12.8	50
30	Response by Good et al to Letter Regarding Article, "Pannexin-1 Channels as an Unexpected New Target of the Antihypertensive Drug Spironolactone― Circulation Research, 2018, 122, e88-e89.	4.5	0
31	Pannexin-1 channels on endothelial cells mediate vascular inflammation during lung ischemia-reperfusion injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L301-L312.	2.9	82
32	A Single-Agent Dual-Specificity Targeting of FOLR1 and DR5 as an Effective Strategy for Ovarian Cancer. Cancer Cell, 2018, 34, 331-345.e11.	16.8	29
33	Epithelial and Endothelial Pannexin1 Channels Mediate AKI. Journal of the American Society of Nephrology: JASN, 2018, 29, 1887-1899.	6.1	38
34	A quantized mechanism for activation of pannexin channels. Nature Communications, 2017, 8, 14324.	12.8	120
35	Embryonic Trogocytosis: Neighborly Nibbling during Development. Current Biology, 2017, 27, R68-R70.	3.9	6
36	Hematopoietic pannexin 1 function is critical for neuropathic pain. Scientific Reports, 2017, 7, 42550.	3.3	49

#	Article	IF	Citations
37	Context-dependent compensation among phosphatidylserine-recognition receptors. Scientific Reports, 2017, 7, 14623.	3.3	23
38	Ex vivo modulation of the Foxo1 phosphorylation state does not lead to dysfunction of T regulatory cells. PLoS ONE, 2017, 12, e0173386.	2.5	5
39	How Mouse Macrophages Sense What Is Going On. Frontiers in Immunology, 2016, 7, 204.	4.8	99
40	Apoptotic cell recognition receptors and scavenger receptors. Immunological Reviews, 2016, 269, 44-59.	6.0	157
41	Boosting Apoptotic Cell Clearance by Colonic Epithelial Cells Attenuates Inflammation InÂVivo. Immunity, 2016, 44, 807-820.	14.3	96
42	The Dynamics of Apoptotic Cell Clearance. Developmental Cell, 2016, 38, 147-160.	7.0	235
43	Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis. Advances in Experimental Medicine and Biology, 2016, 930, 25-49.	1.6	80
44	†This way please': Apoptotic cells regulate phagocyte migration before and after engulfment. European Journal of Immunology, 2016, 46, 1583-1586.	2.9	11
45	Adhesion GPCRs as Modulators of Immune Cell Function. Handbook of Experimental Pharmacology, 2016, 234, 329-350.	1.8	42
46	Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature, 2016, 539, 570-574.	27.8	165
47	Do not let death do us part: â€ ⁻ find-me' signals in communication between dying cells and the phagocytes. Cell Death and Differentiation, 2016, 23, 979-989.	11.2	131
48	The adhesion GPCR BAI1 mediates macrophage ROS production and microbicidal activity against Gram-negative bacteria. Science Signaling, 2016, 9, ra14.	3.6	54
49	A molecular signature in the pannexin1 intracellular loop confers channel activation by the $\hat{l}\pm 1$ adrenoreceptor in smooth muscle cells. Science Signaling, 2015, 8, ra17.	3.6	109
50	Cooperation between Noncanonical Ras Network Mutations. Cell Reports, 2015, 10, 307-316.	6.4	26
51	ShcA Regulates Thymocyte Proliferation through Specific Transcription Factors and a c-Abl-Dependent Signaling Axis. Molecular and Cellular Biology, 2015, 35, 1462-1476.	2.3	5
52	ShcA Regulates Late Stages of T Cell Development and Peripheral CD4+ T Cell Numbers. Journal of Immunology, 2015, 194, 1665-1676.	0.8	5
53	A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nature Communications, 2015, 6, 7439.	12.8	267
54	Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation. Nature Communications, 2015, 6, 7965.	12.8	159

#	Article	IF	CITATIONS
55	Phagocytosis of apoptotic cells in homeostasis. Nature Immunology, 2015, 16, 907-917.	14.5	632
56	Using Phosphatidylserine Exposure on Apoptotic Cells to Stimulate Myoblast Fusion. Methods in Molecular Biology, 2015, 1313, 141-148.	0.9	6
57	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	11,2	811
58	Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. Journal of Clinical Investigation, 2015, 125, 2748-2758.	8.2	86
59	Unexpected Phenotype of Mice Lacking Shcbp1, a Protein Induced during T Cell Proliferation. PLoS ONE, 2014, 9, e105576.	2.5	16
60	Brain angiogenesis inhibitor 1 is expressed by gastric phagocytes during infection with <i>Helicobacter pylori</i> and mediates the recognition and engulfment of human apoptotic gastric epithelial cells. FASEB Journal, 2014, 28, 2214-2224.	0.5	41
61	Apoptosis and Engulfment by Bronchial Epithelial Cells. Implications for Allergic Airway Inflammation. Annals of the American Thoracic Society, 2014, 11, S259-S262.	3.2	27
62	The adaptor protein GULP promotes Jedi-1–mediated phagocytosis through a clathrin-dependent mechanism. Molecular Biology of the Cell, 2014, 25, 1925-1936.	2.1	18
63	Intrinsic properties and regulation of Pannexin 1 channel. Channels, 2014, 8, 103-109.	2.8	53
64	Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature, 2014, 507, 329-334.	27.8	221
65	Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Molecular Metabolism, 2014, 3, 114-123.	6.5	168
66	Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology, 2014, 14, 166-180.	22.7	952
67	Metabolic Vulnerabilities in Endometrial Cancer. Cancer Research, 2014, 74, 5832-5845.	0.9	88
68	A Link between the Cytoplasmic Engulfment Protein Elmo1 and the Mediator Complex Subunit Med31. Current Biology, 2013, 23, 162-167.	3.9	12
69	Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature, 2013, 493, 547-551.	27.8	254
70	Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature, 2013, 497, 263-267.	27.8	239
71	A MERry Response After Myocardial Infarction. Circulation Research, 2013, 113, 949-951.	4.5	4
72	Clearing the Dead: Apoptotic Cell Sensing, Recognition, Engulfment, and Digestion. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008748-a008748.	5.5	410

#	Article	IF	CITATIONS
73	Pannexin 1, an ATP Release Channel, Is Activated by Caspase Cleavage of Its Pore-associated C-terminal Autoinhibitory Region. Journal of Biological Chemistry, 2012, 287, 11303-11311.	3.4	243
74	Oxygenated Lipids: A Mode to WiPE Out Inflammation?. Immunity, 2012, 36, 699-701.	14.3	1
75	Mathematical Investigation of How Oncogenic Ras Mutants Promote Ras Signaling. Methods in Molecular Biology, 2012, 880, 69-85.	0.9	13
76	Mechanistic modeling to investigate signaling by oncogenic Ras mutants. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 117-127.	6.6	9
77	Metabolic Connections during Apoptotic Cell Engulfment. Cell, 2011, 147, 1442-1445.	28.9	111
78	Brain-specific angiogenesis inhibitor-1 expression in astrocytes and neurons: Implications for its dual function as an apoptotic engulfment receptor. Brain, Behavior, and Immunity, 2011, 25, 915-921.	4.1	59
79	Beginnings of a Good Apoptotic Meal: The Find-Me and Eat-Me Signaling Pathways. Immunity, 2011, 35, 445-455.	14.3	463
80	Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature, 2011, 477, 220-224.	27.8	202
81	A Conserved Role for SNX9-Family Members in the Regulation of Phagosome Maturation during Engulfment of Apoptotic Cells. PLoS ONE, 2011, 6, e18325.	2.5	25
82	Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis elegans. Nature Cell Biology, 2011, 13, 79-86.	10.3	59
83	Phosphatidylserine receptors: what is the new RAGE?. EMBO Reports, 2011, 12, 287-288.	4.5	13
84	The role of nucleotides in apoptotic cell clearance: implications for disease pathogenesis. Journal of Molecular Medicine, 2011, 89, 13-22.	3.9	30
85	Pannexin1 Regulates α1-Adrenergic Receptor– Mediated Vasoconstriction. Circulation Research, 2011, 109, 80-85.	4.5	164
86	Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2136-2141.	7.1	126
87	Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nature Cell Biology, 2011, 13, 1076-1083.	10.3	148
88	Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature, 2010, 464, 778-782.	27.8	224
89	Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature, 2010, 467, 333-337.	27.8	143
90	Pannexin 1 channels mediate â€~find-me' signal release and membrane permeability during apoptosis. Nature, 2010, 467, 863-867.	27.8	929

#	Article	IF	Citations
91	CXCR4 acts as a costimulator during thymic \hat{l}^2 -selection. Nature Immunology, 2010, 11, 162-170.	14.5	155
92	ELMO1 signaling in apoptotic germ cell clearance and spermatogenesis. Annals of the New York Academy of Sciences, 2010, 1209, 30-36.	3.8	23
93	Clearance of apoptotic cells: implications in health and disease. Journal of Cell Biology, 2010, 189, 1059-1070.	5.2	444
94	A Key Role for the Phosphorylation of Ser440 by the Cyclic AMP-dependent Protein Kinase in Regulating the Activity of the Src Homology 2 Domain-containing Inositol 5′-Phosphatase (SHIP1). Journal of Biological Chemistry, 2010, 285, 34839-34849.	3.4	20
95	Identification of a Novel Macrophage Phenotype That Develops in Response to Atherogenic Phospholipids via Nrf2. Circulation Research, 2010, 107, 737-746.	4.5	472
96	Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. Journal of Experimental Medicine, 2010, 207, 1807-1817.	8.5	450
97	Emerging Roles of Brain-Specific Angiogenesis Inhibitor 1. Advances in Experimental Medicine and Biology, 2010, 706, 167-178.	1.6	20
98	Regulation of the Src Homology 2 Domain-containing Inositol 5′-Phosphatase (SHIP1) by the Cyclic AMP-dependent Protein Kinase. Journal of Biological Chemistry, 2009, 284, 20070-20078.	3.4	12
99	The Adaptor Protein Shc Plays a Key Role during Early B Cell Development. Journal of Immunology, 2009, 183, 5468-5476.	0.8	8
100	Integrin-linked Kinase Interactions with ELMO2 Modulate Cell Polarity. Molecular Biology of the Cell, 2009, 20, 3033-3043.	2.1	30
101	G2A Deficiency in Mice Promotes Macrophage Activation and Atherosclerosis. Circulation Research, 2009, 104, 318-327.	4.5	63
102	A Systems Perspective of Ras Signaling in Cancer. Clinical Cancer Research, 2009, 15, 1510-1513.	7.0	42
103	The Phosphatidylserine Receptor TIM-4 Does Not Mediate Direct Signaling. Current Biology, 2009, 19, 346-351.	3.9	136
104	Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 2009, 461, 282-286.	27.8	1,335
105	An essential role for calcium flux in phagocytes for apoptotic cell engulfment and the anti-inflammatory response. Cell Death and Differentiation, 2009, 16, 1323-1331.	11.2	68
106	A pathway for phagosome maturation during engulfment of apoptotic cells. Nature Cell Biology, 2008, 10, 556-566.	10.3	243
107	Phagosome maturation: going through the acid test. Nature Reviews Molecular Cell Biology, 2008, 9, 781-795.	37.0	447
108	Phagocytic Signaling: You Can Touch, but You Can't Eat. Current Biology, 2008, 18, R521-R524.	3.9	42

#	Article	IF	Citations
109	Pallbearer and friends: lending a hand in apoptotic cell clearance. Trends in Cell Biology, 2008, 18, 95-97.	7.9	2
110	Death in the CNS: Six-Microns-Under. Cell, 2008, 133, 393-395.	28.9	8
111	Network Analysis of Oncogenic Ras Activation in Cancer. Science, 2007, 318, 463-467.	12.6	114
112	ELMO1 and Dock180, a Bipartite Rac1 Guanine Nucleotide Exchange Factor, Promote Human Glioma Cell Invasion. Cancer Research, 2007, 67, 7203-7211.	0.9	126
113	Journey to the grave: signaling events regulating removal of apoptotic cells. Journal of Cell Science, 2007, 120, 2143-2149.	2.0	110
114	Engulfment of apoptotic cells: signals for a good meal. Nature Reviews Immunology, 2007, 7, 964-974.	22.7	571
115	BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature, 2007, 450, 430-434.	27.8	714
116	Regulation of Arf6 and ACAP1 Signaling by the PTB-Domain-Containing Adaptor Protein GULP. Current Biology, 2007, 17, 722-727.	3.9	26
117	Dock180–ELMO Cooperation in Rac Activation. Methods in Enzymology, 2006, 406, 388-402.	1.0	80
118	Apoptotic Cells Induce a Phosphatidylserine-Dependent Homeostatic Response from Phagocytes. Current Biology, 2006, 16, 2252-2258.	3.9	103
119	ShcA Mediates the Dominant Pathway to Extracellular Signal-Regulated Kinase Activation during Early Thymic Development. Molecular and Cellular Biology, 2006, 26, 9035-9044.	2.3	8
120	The Lipoprotein Receptor-related Protein-1 (LRP) Adapter Protein GULP Mediates Trafficking of the LRP Ligand Prosaposin, Leading to Sphingolipid and Free Cholesterol Accumulation in Late Endosomes and Impaired Efflux. Journal of Biological Chemistry, 2006, 281, 12081-12092.	3.4	39
121	Characterization of a Novel Interaction between ELMO1 and ERM Proteins. Journal of Biological Chemistry, 2006, 281, 5928-5937.	3.4	39
122	Neural-Specific Inactivation of ShcA Results in Increased Embryonic Neural Progenitor Apoptosis and Microencephaly. Journal of Neuroscience, 2006, 26, 7885-7897.	3.6	25
123	A Steric-Inhibition Model for Regulation of Nucleotide Exchange via the Dock180 Family of GEFs. Current Biology, 2005, 15, 371-377.	3.9	96
124	The DOCK180/Elmo Complex Couples ARNO-Mediated Arf6 Activation to the Downstream Activation of Rac1. Current Biology, 2005, 15, 1749-1754.	3.9	142
125	c-Myb Is Critical for B Cell Development and Maintenance of Follicular B Cells. Immunity, 2005, 23, 275-286.	14.3	167
126	Dock180 and ELMO1 Proteins Cooperate to Promote Evolutionarily Conserved Rac-dependent Cell Migration. Journal of Biological Chemistry, 2004, 279, 6087-6097.	3.4	193

#	Article	IF	CITATIONS
127	PH domain of ELMO functions in trans to regulate Rac activation via Dock180. Nature Structural and Molecular Biology, 2004, $11,756-762$.	8.2	121
128	Phagocytosis of Apoptotic Cells Is Regulated by a UNC-73/TRIO-MIG-2/RhoG Signaling Module and Armadillo Repeats of CED-12/ELMO. Current Biology, 2004, 14, 2208-2216.	3.9	185
129	Nuclear localization of the DOCK180/ELMO complex. Archives of Biochemistry and Biophysics, 2004, 429, 23-29.	3.0	21
130	Cues for apoptotic cell engulfment: eat-me, don't eat-me and come-get-me signals. Trends in Cell Biology, 2003, 13, 648-656.	7.9	216
131	Role of Shc in T-cell development and function. Immunological Reviews, 2003, 191, 183-195.	6.0	17
132	"Recruitment Signals―from Apoptotic Cells. Cell, 2003, 113, 817-820.	28.9	149
133	Engulfment of Apoptotic Cells Is Negatively Regulated by Rho-mediated Signaling. Journal of Biological Chemistry, 2003, 278, 49911-49919.	3.4	138
134	Regulation of the immune response by SHIP. Seminars in Immunology, 2002, 14, 37-47.	5.6	57
135	A nonredundant role for the adapter protein Shc in thymic T cell development. Nature Immunology, 2002, 3, 749-755.	14.5	51
136	Signaling via Shc family adapter proteins. Oncogene, 2001, 20, 6322-6330.	5.9	368
137	Design and Use of an Inducibly Activated Human Immunodeficiency Virus Type 1 Nef To Study Immune Modulation. Journal of Virology, 2001, 75, 834-843.	3.4	29