
Azeez Adebimpe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1939955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Associations between neighborhood socioeconomic status, parental education, and executive system activation in youth. Cerebral Cortex, 2023, 33, 1058-1073.	2.9	10
2	Structural imaging studies of patients with chronic pain: an anatomical likelihood estimate meta-analysis. Pain, 2023, 164, e10-e24.	4.2	8
3	A developmental reduction of the excitation:inhibition ratio in association cortex during adolescence. Science Advances, 2022, 8, eabj8750.	10.3	22
4	Developmental coupling of cerebral blood flow and fMRI fluctuations in youth. Cell Reports, 2022, 38, 110576.	6.4	23
5	Dissociable multi-scale patterns of development in personalized brain networks. Nature Communications, 2022, 13, 2647.	12.8	27
6	P683. Sex Differences in the Functional Topography of Association Networks in Youths. Biological Psychiatry, 2022, 91, S366-S367.	1.3	0
7	P430. Developmental Refinement of Spontaneous Activity Varies Across Sensorimotor and Association Cortices. Biological Psychiatry, 2022, 91, S261-S262.	1.3	0
8	Linking Individual Differences in Personalized Functional Network Topography to Psychopathology in Youth. Biological Psychiatry, 2022, 92, 973-983.	1.3	14
9	Mobile footprinting: linking individual distinctiveness in mobility patterns to mood, sleep, and brain functional connectivity. Neuropsychopharmacology, 2022, 47, 1662-1671.	5.4	6
10	Voxelâ€wise intermodal coupling analysis of two or more modalities using local covariance decomposition. Human Brain Mapping, 2022, 43, 4650-4663.	3.6	4
11	ASLPrep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion. Nature Methods, 2022, 19, 683-686.	19.0	13
12	Neurocognitive and functional heterogeneity in depressed youth. Neuropsychopharmacology, 2021, 46, 783-790.	5.4	10
13	Brain Responses to Noxious Stimuli in Patients With Chronic Pain. JAMA Network Open, 2021, 4, e2032236.	5.9	12
14	Mapping Physiology-Function Coupling in Youth. Biological Psychiatry, 2021, 89, S174.	1.3	0
15	Neighborhood Socioeconomic Factors are Associated With Working Memory Performance and Executive System Activation in Youth. Biological Psychiatry, 2021, 89, S360-S361.	1.3	0
16	Connectome Wide Study of Intrinsic Functional Connectivity Associated With Impulsive Choice in Adolescence. Biological Psychiatry, 2021, 89, S93-S94.	1.3	0
17	Evidence for a Developmental Reduction of the Excitation: Inhibition Balance in Association Cortex During Adolescence. Biological Psychiatry, 2021, 89, S357.	1.3	0
18	Sex Differences in Functional Topography of Association Networks. Biological Psychiatry, 2021, 89, \$178	1.3	1

Azeez Adebimpe

#	Article	IF	CITATIONS
19	Linking Individual Differences in Personalized Functional Network Topography to Psychopathology in Youth. Biological Psychiatry, 2021, 89, S360.	1.3	2
20	QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nature Methods, 2021, 18, 775-778.	19.0	127
21	FlywheelTools: Data Curation and Manipulation on the Flywheel Platform. Frontiers in Neuroinformatics, 2021, 15, 678403.	2.5	7
22	A simple permutationâ€based test of intermodal correspondence. Human Brain Mapping, 2021, 42, 5175-5187.	3.6	16
23	Transitions to Default Mode and Frontoparietal Network Activation States are Associated With Age and Working Memory Performance. Biological Psychiatry, 2020, 87, S457-S458.	1.3	1
24	Individual Variation in Functional Topography of Association Networks in Youth. Neuron, 2020, 106, 340-353.e8.	8.1	162
25	Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A large-scale fMRI meta-analysis. Neuroscience and Biobehavioral Reviews, 2020, 112, 300-323.	6.1	66
26	Longitudinal Development of Brain Iron Is Linked to Cognition in Youth. Journal of Neuroscience, 2020, 40, 1810-1818.	3.6	60
27	Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood. Developmental Cognitive Neuroscience, 2020, 43, 100788.	4.0	65
28	Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Communications Biology, 2020, 3, 261.	4.4	88
29	Functional and Structural Network Disorganizations in Typical Epilepsy With Centro-Temporal Spikes and Impact on Cognitive Neurodevelopment. Frontiers in Neurology, 2019, 10, 809.	2.4	16
30	Robust Spatial Extent Inference With a Semiparametric Bootstrap Joint Inference Procedure. Biometrics, 2019, 75, 1145-1155.	1.4	7
31	Accelerated cortical thinning within structural brain networks is associated with irritability in youth. Neuropsychopharmacology, 2019, 44, 2254-2262.	5.4	26
32	Preterm Modulation of Connectivity by Endogenous Generators: The Theta Temporal Activities in Coalescence with Slow Waves. Brain Topography, 2019, 32, 762-772.	1.8	7
33	Intersubject Synchronization of Late Adolescent Brain Responses to Violent Movies: A Virtue-Ethics Approach. Frontiers in Behavioral Neuroscience, 2019, 13, 260.	2.0	5
34	Sex differences in network controllability as a predictor of executive function in youth. NeuroImage, 2019, 188, 122-134.	4.2	59
35	Identifying neural drivers of benign childhood epilepsy with centrotemporal spikes. NeuroImage: Clinical, 2018, 17, 739-750.	2.7	15
36	Mitigating head motion artifact in functional connectivity MRI. Nature Protocols, 2018, 13, 2801-2826.	12.0	211

Azeez Adebimpe

#	Article	IF	CITATIONS
37	Parental Desensitization to Gun Violence in PG-13 Movies. Pediatrics, 2018, 141, .	2.1	13
38	EEG Resting State Functional Connectivity Analysis in Children with Benign Epilepsy with Centrotemporal Spikes. Frontiers in Neuroscience, 2016, 10, 143.	2.8	51
39	EEG resting state analysis of cortical sources in patients with benign epilepsy with centrotemporal spikes. NeuroImage: Clinical, 2015, 9, 275-282.	2.7	35
40	Functional Brain Dysfunction in Patients with Benign Childhood Epilepsy as Revealed by Graph Theory. PLoS ONE, 2015, 10, e0139228.	2.5	35
41	LP7: The comparison of resting state networks between normal children and adolescents with benign childhood epilepsy with centrotemporal spikes: a high density EEG study. Clinical Neurophysiology, 2014, 125, S80-S81.	1.5	1
42	Developmental Coupling of Cerebral Blood Flow and fMRI Fluctuations in Youth. SSRN Electronic Journal, 0, , .	0.4	0