
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1939556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specialized interferon action in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	56
2	Trisomy 21 increases microtubules and disrupts centriolar satellite localization. Molecular Biology of the Cell, 2022, 33, mbcE21100517T.	2.1	4
3	Global Analyses to Identify Direct Transcriptional Targets of p53. Methods in Molecular Biology, 2021, 2267, 19-56.	0.9	3
4	JAK inhibition for treatment of psoriatic arthritis in Down syndrome. Rheumatology, 2021, 60, e309-e311.	1.9	12
5	Precocious clonal hematopoiesis in Down syndrome is accompanied by immune dysregulation. Blood Advances, 2021, 5, 1791-1796.	5.2	13
6	Seroconversion stages COVID19 into distinct pathophysiological states. ELife, 2021, 10, .	6.0	40
7	Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response. Nature Communications, 2021, 12, 1375.	12.8	31
8	Sonic Hedgehog Pathway Modulation Normalizes Expression of Olig2 in Rostrally Patterned NPCs With Trisomy 21. Frontiers in Cellular Neuroscience, 2021, 15, 794675.	3.7	12
9	JAK1 Inhibition Blocks Lethal Immune Hypersensitivity in a Mouse Model of Down Syndrome. Cell Reports, 2020, 33, 108407.	6.4	23
10	Down Syndrome and COVID-19: A Perfect Storm?. Cell Reports Medicine, 2020, 1, 100019.	6.5	86
11	Further understanding the connection between Alzheimer's disease and Down syndrome. Alzheimer's and Dementia, 2020, 16, 1065-1077.	0.8	52
12	Nutlin-Induced Apoptosis Is Specified by a Translation Program Regulated by PCBP2 and DHX30. Cell Reports, 2020, 30, 4355-4369.e6.	6.4	18
13	Tumoural soft tissue calcification in Down syndrome: association with heterozygous germline SAMD9 mutation and hyperactive type I interferon signaling. Rheumatology, 2020, 59, e102-e104.	1.9	2
14	Transcriptional control by enhancers: working remotely for improved performance. Transcription, 2020, 11, 1-2.	3.1	1
15	Multi-Omic Approaches Identify Metabolic and Autophagy Regulators Important in Ovarian Cancer Dissemination. IScience, 2019, 19, 474-491.	4.1	21
16	Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors. Nature Communications, 2019, 10, 4766.	12.8	73
17	Mass Cytometry Reveals Global Immune Remodeling with Multi-lineage Hypersensitivity to Type I Interferon in Down Syndrome. Cell Reports, 2019, 29, 1893-1908.e4.	6.4	78
18	Transcriptional Responses to IFN-Î ³ Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Molecular Cell, 2019, 76, 485-499.e8.	9.7	52

#	Article	IF	CITATIONS
19	Janus kinase inhibition in Down syndrome: 2 cases of therapeutic benefit for alopecia areata. JAAD Case Reports, 2019, 5, 365-367.	0.8	33
20	Transcriptional CDKs in the spotlight. Transcription, 2019, 10, 45-46.	3.1	10
21	Trisomy 21 dysregulates T cell lineages toward an autoimmunity-prone state associated with interferon hyperactivity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24231-24241.	7.1	82
22	SIX2 Mediates Late-Stage Metastasis via Direct Regulation of <i>SOX2</i> and Induction of a Cancer Stem Cell Program. Cancer Research, 2019, 79, 720-734.	0.9	29
23	Therapeutic targeting of transcriptional cyclin-dependent kinases. Transcription, 2019, 10, 118-136.	3.1	78
24	Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicology Letters, 2018, 292, 162-174.	0.8	22
25	Autophagy Inhibition Mediates Apoptosis Sensitization in Cancer Therapy by Relieving FOXO3a Turnover. Developmental Cell, 2018, 44, 555-565.e3.	7.0	154
26	Exosomal biomarkers in Down syndrome and Alzheimer's disease. Free Radical Biology and Medicine, 2018, 114, 110-121.	2.9	64
27	Mechanisms of transcriptional regulation by p53. Cell Death and Differentiation, 2018, 25, 133-143.	11.2	310
28	ΔNp63α Suppresses TGFB2 Expression and RHOA Activity to Drive Cell Proliferation in Squamous Cell Carcinomas. Cell Reports, 2018, 24, 3224-3236.	6.4	32
29	Trisomy 21 Represses Cilia Formation and Function. Developmental Cell, 2018, 46, 641-650.e6.	7.0	50
30	Zinc Finger Protein 521 Regulates Early Hematopoiesis through Cell-Extrinsic Mechanisms in the Bone Marrow Microenvironment. Molecular and Cellular Biology, 2018, 38, .	2.3	7
31	A Kinase-Independent Role for Cyclin-Dependent Kinase 19 in p53 Response. Molecular and Cellular Biology, 2017, 37, .	2.3	57
32	Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia. Cell, 2017, 168, 59-72.e13.	28.9	99
33	Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity. Genome Research, 2017, 27, 1645-1657.	5.5	123
34	On the Origin of IncRNAs: Missing Link Found. Trends in Genetics, 2017, 33, 660-662.	6.7	24
35	CDK8 Kinase Activity Promotes Glycolysis. Cell Reports, 2017, 21, 1495-1506.	6.4	67
36	Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Scientific Reports, 2017, 7, 14818.	3.3	148

#	Article	IF	CITATIONS
37	Red blood cell metabolism in Down syndrome: hints on metabolic derangements in aging. Blood Advances, 2017, 1, 2776-2780.	5.2	24
38	Trisomy 21 consistently activates the interferon response. ELife, 2016, 5, .	6.0	238
39	Revisiting IncRNAs: How Do You Know Yours Is Not an eRNA?. Molecular Cell, 2016, 62, 1-2.	9.7	47
40	Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase. Cell Reports, 2016, 16, 3195-3207.	6.4	40
41	The TIP60 Complex Is a Conserved Coactivator of HIF1A. Cell Reports, 2016, 16, 37-47.	6.4	78
42	The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem–like Properties in Glioblastoma That Contribute to Tumorigenesis. Cancer Research, 2016, 76, 5383-5394.	0.9	23
43	NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia. Cell Reports, 2016, 14, 2938-2949.	6.4	13
44	Role of the host restriction factor APOBEC3 on papillomavirus evolution. Virus Evolution, 2015, 1, vev015.	4.9	57
45	The Six1 oncoprotein downregulates p53 via concomitant regulation of RPL26 and microRNA-27a-3p. Nature Communications, 2015, 6, 10077.	12.8	46
46	p53 Family Members Regulate Phenotypic Response to Aurora Kinase A Inhibition in Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2015, 14, 1117-1129.	4.1	32
47	Human ACAP2 is a homolog of <i>C. elegans</i> CNT-1 that promotes apoptosis in cancer cells. Cell Cycle, 2015, 14, 1771-1778.	2.6	8
48	ATM regulates cell fate choice upon p53 activation by modulating mitochondrial turnover and ROS levels. Cell Cycle, 2015, 14, 56-63.	2.6	31
49	A signature for success. ELife, 2015, 4, .	6.0	3
50	Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 1-15.	5.2	575
51	Autophagy Controls the Kinetics and Extent of Mitochondrial Apoptosis by Regulating PUMA Levels. Cell Reports, 2014, 7, 45-52.	6.4	93
52	Back to Bases: How a Nucleotide Biosynthetic Enzyme Controls p53 Activation. Molecular Cell, 2014, 53, 365-367.	9.7	1
53	Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. ELife, 2014, 3, e02200.	6.0	205
54	The impact of post-transcriptional regulation in the p53 network. Briefings in Functional Genomics, 2013, 12, 46-57.	2.7	36

#	Article	IF	CITATIONS
55	A Genetic Screen Identifies TCF3/E2A and TRIAP1 as Pathway-Specific Regulators of the Cellular Response to p53 Activation. Cell Reports, 2013, 3, 1346-1354.	6.4	61
56	HIF1A Employs CDK8-Mediator to Stimulate RNAPII Elongation in Response to Hypoxia. Cell, 2013, 153, 1327-1339.	28.9	300
57	How does ΔNp63α drive cancer?. Epigenomics, 2013, 5, 5-7.	2.1	2
58	ERK phosphorylation of MED14 in promoter complexes during mitogen-induced gene activation by Elk-1. Nucleic Acids Research, 2013, 41, 10241-10253.	14.5	10
59	ΔNp63α utilizes multiple mechanisms to repress transcription in squamous cell carcinoma cells. Cell Cycle, 2013, 12, 409-416.	2.6	14
60	A DR4:tBID axis drives the p53 apoptotic response by promoting oligomerization of poised BAX. EMBO Journal, 2012, 31, 1266-1278.	7.8	29
61	ΔNp63α represses anti-proliferative genes via H2A.Z deposition. Genes and Development, 2012, 26, 2325-2336.	5.9	51
62	Get Back TFIIF, Don't Let Me Gdown1. Molecular Cell, 2012, 45, 3-5.	9.7	12
63	ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nature Chemical Biology, 2012, 8, 646-654.	8.0	62
64	The p53 circuit board. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1825, 229-244.	7.4	60
65	Lessons on transcriptional control from the serum response network. Current Opinion in Genetics and Development, 2011, 21, 160-166.	3.3	22
66	CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nature Structural and Molecular Biology, 2010, 17, 194-201.	8.2	303
67	Differential regulation of p53 target genes: it's (core promoter) elementary: Figure 1 Genes and Development, 2010, 24, 111-114.	5.9	22
68	Disparate chromatin landscapes and kinetics of inactivation impact differential regulation of p53 target genes. Cell Cycle, 2010, 9, 3428-3437.	2.6	18
69	Gene-specific repression of the p53 target gene PUMA via intragenic CTCF–Cohesin binding. Genes and Development, 2010, 24, 1022-1034.	5.9	80
70	CDK8. Transcription, 2010, 1, 4-12.	3.1	184
71	The Meaning of Pausing. Molecular Cell, 2010, 40, 507-508.	9.7	7
72	The Histone Deacetylase Sirt6 Regulates Glucose Homeostasis via Hif1α. Cell, 2010, 140, 280-293.	28.9	880

#	Article	IF	CITATIONS
73	A role for Chk1 in blocking transcriptional elongation of p21 RNA during the S-phase checkpoint. Genes and Development, 2009, 23, 1364-1377.	5.9	53
74	The Human CDK8 Subcomplex Is a Histone Kinase That Requires Med12 for Activity and Can Function Independently of Mediator. Molecular and Cellular Biology, 2009, 29, 650-661.	2.3	193
75	Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO Journal, 2008, 27, 1447-57.	7.8	86
76	Histone H2B ubiquitination: the cancer connection. Genes and Development, 2008, 22, 2743-2749.	5.9	57
77	Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation. Cell Cycle, 2008, 7, 2427-2433.	2.6	59
78	BH3 activation blocks Hdmx suppression of apoptosis and cooperates with Nutlin to induce cell death. Cell Cycle, 2008, 7, 1973-1982.	2.6	44
79	Stimulus-Specific Transcriptional Regulation Within the p53 Network. Cell Cycle, 2007, 6, 2594-2598.	2.6	32
80	Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes and Development, 2006, 20, 601-612.	5.9	229
81	p53 Functions through Stress- and Promoter-Specific Recruitment of Transcription Initiation Components before and after DNA Damage. Molecular Cell, 2003, 12, 1015-1027.	9.7	238
82	Transcriptional Regulation by p53 through Intrinsic DNA/Chromatin Binding and Site-Directed Cofactor Recruitment. Molecular Cell, 2001, 8, 57-69.	9.7	403