
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1939129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulatory and academic studies to derive reference values for human health: The case of bisphenol S. Environmental Research, 2022, 204, 112233.	7.5	22
2	Use of Dental Defects Associated with Low-Dose di(2-Ethylhexyl)Phthalate as an Early Marker of Exposure to Environmental Toxicants. Environmental Health Perspectives, 2022, 130, .	6.0	4
3	Enamel Matrix Biomineralization: The Role of pH Cycling. Biology of Extracellular Matrix, 2021, , 271-293.	0.3	0
4	Environmental Factors and Enamel/Dentin Defects. Biology of Extracellular Matrix, 2021, , 295-305.	0.3	0
5	The Role of CH/IGF Axis in Dento-Alveolar Complex from Development to Aging and Therapeutics: A Narrative Review. Cells, 2021, 10, 1181.	4.1	9
6	Origins of Alterations to Rankl Null Mutant Mouse Dental Root Development. International Journal of Molecular Sciences, 2020, 21, 2201.	4.1	4
7	Primary Retention of Molars and RANKL Signaling Alteration during Craniofacial Growth. Journal of Clinical Medicine, 2020, 9, 898.	2.4	3
8	Disrupted Iron Storage in Dental Fluorosis. Journal of Dental Research, 2019, 98, 994-1001.	5.2	13
9	Protein Kinase D1 (PKD1) Is a New Functional Non-Genomic Target of Bisphenol A in Breast Cancer Cells. Frontiers in Pharmacology, 2019, 10, 1683.	3.5	6
10	Micro-dissection of Enamel Organ from Mandibular Incisor of Rats Exposed to Environmental Toxicants. Journal of Visualized Experiments, 2018, , .	0.3	7
11	Respective role of membrane and nuclear estrogen receptor (ER) α in the mandible of growing mice: Implications for ERα modulation. Journal of Bone and Mineral Research, 2018, 33, 1520-1531.	2.8	9
12	Editorial: Tooth Enamel: Frontiers in Mineral Chemistry and Biochemistry, Integrative Cell Biology and Genetics. Frontiers in Physiology, 2018, 9, 1153.	2.8	0
13	Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by <i>CLDN19</i> gene mutations. Journal of Medical Genetics, 2017, 54, 26-37.	3.2	45
14	RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model. Frontiers in Physiology, 2017, 8, 338.	2.8	33
15	Disruption of Steroid Axis, a New Paradigm for Molar Incisor Hypomineralization (MIH). Frontiers in Physiology, 2017, 8, 343.	2.8	21
16	Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors. Frontiers in Physiology, 2016, 7, 503.	2.8	21
17	Chronic Exposure to Bisphenol A Exacerbates Dental Fluorosis in Growing Rats. Journal of Bone and Mineral Research, 2016, 31, 1955-1966.	2.8	31
18	Distorted Patterns of Dentinogenesis and Eruption in Msx2 Null Mutants. American Journal of Pathology, 2016, 186, 2577-2587.	3.8	15

#	Article	IF	CITATIONS
19	Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis. Endocrinology, 2016, 157, 4287-4296.	2.8	22
20	Asporin and the Mineralization Process in Fluoride-Treated Rats. Journal of Bone and Mineral Research, 2014, 29, 1446-1455.	2.8	20
21	Enamel hypomineralization due to endocrine disruptors. Connective Tissue Research, 2014, 55, 43-47.	2.3	19
22	Estrogen and Bisphenol A Affect Male Rat Enamel Formation and Promote Ameloblast Proliferation. Endocrinology, 2014, 155, 3365-3375.	2.8	36
23	Msx1 role in craniofacial bone morphogenesis. Bone, 2014, 66, 96-104.	2.9	46
24	MSX2 in ameloblast cell fate and activity. Frontiers in Physiology, 2014, 5, 510.	2.8	28
25	Enamel Defects Reflect Perinatal Exposure to Bisphenol A. American Journal of Pathology, 2013, 183, 108-118.	3.8	106
26	Spots on tooth enamel: what's new?. Journal of Dentofacial Anomalies and Orthodontics, 2013, 16, 404.	0.0	0
27	Insulin-Like Growth Factor Binding Proteins Increase Intracellular Calcium Levels in Two Different Cell Lines. PLoS ONE, 2013, 8, e59323.	2.5	15
28	Les taches de l'émail : quoi de neuf ?. Revue D'orthopedie Dento-faciale, 2013, 47, 295-300.	0.0	1
29	Wnt/ \hat{l}^2 -catenin signaling and Msx1 promote outgrowth of the maxillary prominences. Frontiers in Physiology, 2012, 3, 375.	2.8	22
30	Regulation of Calbindin-D _{28k} Expression by Msx2 in the Dental Epithelium. Journal of Histochemistry and Cytochemistry, 2012, 60, 603-610.	2.5	8
31	Transcriptional Regulation of Msx1 Natural Antisense Transcript. Cells Tissues Organs, 2011, 194, 151-155.	2.3	9
32	Msx1 Expression Regulation by Its Own Antisense RNA: Consequence on Tooth Development and Bone Regeneration. Cells Tissues Organs, 2009, 189, 115-121.	2.3	23
33	Autoregulatory loop of Msx1 expression involving its antisense transcripts. Journal of Cellular Physiology, 2009, 220, 303-310.	4.1	16
34	Insulin-Like Growth Factor Binding Protein (IGFBP-1) Involvement in Intrauterine Growth Retardation: Study on IGFBP-1 Overexpressing Transgenic Mice. Endocrinology, 2006, 147, 4730-4737.	2.8	51
35	Dysregulation of energy homeostasis in mice overexpressing insulin-like growth factor-binding protein 6 in the brain. Diabetologia, 2005, 48, 1189-1197.	6.3	21
36	Insulin-Like Growth Factor Binding Protein-6 Transgenic Mice: Postnatal Growth, Brain Development, and Reproduction Abnormalities. Endocrinology, 2004, 145, 2412-2420.	2.8	54

#	Article	IF	CITATIONS
37	Cytoplasmic foci are sites of mRNA decay in human cells. Journal of Cell Biology, 2004, 165, 31-40.	5.2	553
38	â€~Cap-tabolism'. Trends in Biochemical Sciences, 2004, 29, 436-444.	7.5	97
39	The IGF system in neuroblastoma xenografts: focus on IGF-binding protein-6. Journal of Endocrinology, 2002, 172, 467-476.	2.6	24
40	The amino-terminal region of insulin-like growth factor binding protein-3, 1–95IGFBP-3, induces apoptosis of MCF-7 breast carcinoma cells. Biochemical and Biophysical Research Communications, 2002, 293, 55-60.	2.1	17
41	Insulin-like growth factor binding protein-6 inhibits neuroblastoma cell proliferation and tumour development. European Journal of Cancer, 2002, 38, 2058-2065.	2.8	28
42	Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO Journal, 2002, 21, 6915-6924.	7.8	398
43	IGFBPs are involved in xenograft development in nude mice. Medical and Pediatric Oncology, 2001, 36, 154-156.	1.0	2
44	AUUUA Sequences Compromise Human Insulin-like Growth Factor Binding Protein-1 mRNA Stability. Biochemical and Biophysical Research Communications, 2000, 267, 509-515.	2.1	26
45	Multi-hormonal regulation of IGFBP-6 expression in human neuroblastoma cells. Growth Hormone and IGF Research, 2000, 10, 349-359.	1.1	10
46	Insulin-Like Growth Factor (IGF) Binding Proteins Modulate the Glucocorticoid-Dependent Biological Effects of IGF-II in Cultured Fetal Rat Hepatocytes*. Endocrinology, 1999, 140, 2232-2240.	2.8	10
47	Insulin-Like Growth Factor (IGF) Binding Proteins Modulate the Glucocorticoid-Dependent Biological Effects of IGF-II in Cultured Fetal Rat Hepatocytes. Endocrinology, 1999, 140, 2232-2240.	2.8	1
48	N-myc regulation of type I insulin-like growth factor receptor in a human neuroblastoma cell line. Cancer Research, 1999, 59, 2898-902.	0.9	33
49	IGFBP-2 expression in a human cell line is associated with increased IGFBP-3 proteolysis, decreased IGFBP-1 expression and increased tumorigenicity. , 1998, 77, 874-879.		39
50	Retinoic acid stimulates IGF binding protein (IGFBP)-6 and depresses IGFBP-2 and IGFBP-4 in SK-N-SH human neuroblastoma cells. Journal of Endocrinology, 1998, 159, 227-232.	2.6	35
51	Expression of insulin-like growth factor-binding protein 6 complementary DNA alters neuroblastoma cell growth. Cancer Research, 1998, 58, 1670-6.	0.9	37
52	Liver-Specific Expression of Human Insulin-Like Growth Factor Binding Protein-1 in Transgenic Mice: Repercussions on Reproduction, Ante- and Perinatal Mortality and Postnatal Growth ¹ . Endocrinology, 1997, 138, 2937-2947.	2.8	119
53	Role of Insulin-Like Growth Factor Binding Protein-2 and Its Limited Proteolysis in Neuroblastoma Cell Proliferation: Modulation by Transforming Growth Factor-β and Retinoic Acid*. Endocrinology, 1997, 138, 683-690.	2.8	45
54	IGF-binding protein-6 is involved in growth inhibition in SH-SY5Y human neuroblastoma cells: its production is both IGF- and cell density-dependent. Journal of Endocrinology, 1997, 152, 221-227.	2.6	36

#	Article	IF	CITATIONS
55	Liver-Specific Expression of Human Insulin-Like Growth Factor Binding Protein-1 in Transgenic Mice: Repercussions on Reproduction, Ante- and Perinatal Mortality and Postnatal Growth. Endocrinology, 1997, 138, 2937-2947.	2.8	37
56	Modulation by retinoic acid of insulin-like growth factor (IGF) and IGF binding protein expression in human SK-N-SH neuroblastoma cells. European Journal of Endocrinology, 1996, 134, 474-480.	3.7	35
57	Interactions between liver nuclear proteins and the human insulin-like growth factor binding protein 1 promoter in the course of development. European Journal of Endocrinology, 1995, 132, 635-641.	3.7	1
58	Interplay of the Liver-Enriched trans-Acting Factors, DBP and HNF1, in the Transactivation of Human IGFBP-1 Promoter. Biochemical and Biophysical Research Communications, 1993, 196, 480-486.	2.1	14
59	Expression of insulin-like growth factor binding protein-1 and -2 genes through the perinatal period in the rat Endocrinology, 1993, 132, 2586-2592.	2.8	33
60	Liver-specific expression of human insulin-like growth factor binding protein 1: functional role of transcription factor HNF1 in vivo Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 272-276.	7.1	33
61	Expression of insulin-like growth factor binding protein-1 and -2 genes through the perinatal period in the rat. Endocrinology, 1993, 132, 2586-2592.	2.8	10
62	Hypomineralized teeth as biomarkers of exposure to endocrine disruptors. Endocrine Abstracts, 0, , .	0.0	0
63	Estrogen and bisphenol A affect enamel formation by different signaling pathways. Endocrine Abstracts, 0, , .	0.0	0
64	Bisphenol A affects amelogenesis by modulating enamel key genes expression. Endocrine Abstracts, 0, ,	0.0	0
65	Systemic enamel pathologies may be due to anti-androgenic effects of some endocrine disruptors. Endocrine Abstracts, 0, , .	0.0	0
66	Steroid receptors involvement in enamel hypomineralization resulting from exposure to low-dose DEHP and bisphenol A. Endocrine Abstracts, 0, , .	0.0	0
67	Disruption of amelogenesis by Adult Exposure to Di(2-ethylhexyl) Phthalate in Mice. Endocrine Abstracts, 0, , .	0.0	Ο