Ajit Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1938209/publications.pdf

Version: 2024-02-01

38	1,221	17 h-index	34
papers	citations		g-index
39	39	39	1166 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Methylglyoxal – a signaling molecule in plant abiotic stress responses. Free Radical Biology and Medicine, 2018, 122, 96-109.	2.9	117
2	A unique <scp>N</scp> i ² ⁺ Ââ€dependent and methylglyoxalâ€inducible rice glyoxalaseÂ <scp>I</scp> possesses a single active site and functions in abiotic stress response. Plant Journal, 2014, 78, 951-963.	5.7	113
3	A glutathione responsive rice glyoxalase <scp>II</scp> , Os <scp>GLYII</scp> â€2, functions in salinity adaptation by maintaining better photosynthesis efficiency and antiâ€oxidant pool. Plant Journal, 2014, 80, 93-105.	5.7	102
4	Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Scientific Reports, 2016, 6, 18358.	3.3	100
5	Glyoxalases and stress tolerance in plants. Biochemical Society Transactions, 2014, 42, 485-490.	3.4	97
6	Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant, Cell and Environment, 2018, 41, 1186-1200.	5.7	95
7	Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles. PLoS ONE, 2017, 12, e0187504.	2.5	84
8	Genome-wide identification of glutathione S-transferase gene family in pepper, its classification, and expression profiling under different anatomical and environmental conditions. Scientific Reports, 2019, 9, 9101.	3.3	74
9	Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. BMC Plant Biology, 2016, 16, 87.	3.6	68
10	Comprehensive analysis and transcript profiling of Arabidopsis thaliana and Oryza sativa catalase gene family suggests their specific roles in development and stress responses. Plant Physiology and Biochemistry, 2018, 123, 54-64.	5.8	49
11	Comprehensive genome-wide analysis of Glutathione S-transferase gene family in potato (Solanum) Tj ETQq1 1 0 conditions. Gene, 2018, 639, 149-162.	0.784314 rş 2.2	rgBT Overloc 44
12	A nuclearâ€localized rice glyoxalase I enzyme, OsGLYIâ€8, functions in the detoxification of methylglyoxal in the nucleus. Plant Journal, 2017, 89, 565-576.	5.7	36
13	Synthesis, characterization, density functional study and antimicrobial evaluation of a series of bischelated complexes with a dithiocarbazate Schiff base ligand. Arabian Journal of Chemistry, 2017, 10, 172-184.	4.9	27
14	Evolutionary variation and expression profiling of Isopentenyl transferase gene family in Arabidopsis thaliana L. and Oryza sativa L Plant Gene, 2018, 15, 15-27.	2.3	26
15	Genome-Wide Identification of Glyoxalase Genes in Medicago truncatula and Their Expression Profiling in Response to Various Developmental and Environmental Stimuli. Frontiers in Plant Science, 2017, 8, 836.	3.6	25
16	Genome-wide identification and expression profiling of glutathione S-transferase family under multiple abiotic and biotic stresses in Medicago truncatula L PLoS ONE, 2021, 16, e0247170.	2.5	23
17	Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer's disease. Phytomedicine Plus, 2022, 2, 100184.	2.0	22
18	Evolution, family expansion, and functional diversification of plant aldehyde dehydrogenases. Gene, 2022, 829, 146522.	2.2	13

#	Article	IF	Citations
19	Genome-wide dissection and expression profiling of unique glyoxalase III genes in soybean reveal the differential pattern of transcriptional regulation. Scientific Reports, 2018, 8, 4848.	3.3	12
20	SSR markers linked to mite (Polyphagotarsonemus latus Banks) resistance in jute (Corchorus) Tj ETQq0 0 0 rgB	T /Oyerloc	k 10 Tf 50 702
21	Identification and characterization of jute LTR retrotransposons. Mobile Genetic Elements, $2011, 1, 18-28$.	1.8	8
22	Genome-wide analysis and transcript profiling identify several abiotic and biotic stress-responsive Glutathione S-transferase genes in soybean. Plant Gene, 2020, 23, 100239.	2.3	8
23	Identification and expression profiling of proline metabolizing genes in Arabidopsis thaliana and Oryza sativa to reveal their stress-specific transcript alteration. Physiology and Molecular Biology of Plants, 2021, 27, 1469-1485.	3.1	8
24	Genome-wide identification, evolution, and transcript profiling of Aldehyde dehydrogenase superfamily in potato during development stages and stress conditions. Scientific Reports, 2021, 11, 18284.	3.3	8
25	Aldehyde dehydrogenase superfamily in sorghum: genome-wide identification, evolution, and transcript profiling during development stages and stress conditions. BMC Plant Biology, 2022, 22, .	3.6	8
26	Genome-wide in silico identification and characterization of Simple Sequence Repeats in diverse completed SARS-CoV-2 genomes. Gene Reports, 2021, 23, 101020.	0.8	6
27	Glyoxalase <scp>III</scp> enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation. Physiologia Plantarum, 2022, 174, e13693.	5.2	6
28	Gene modification by fastâ€track recombineering for cellular localization and isolation of components of plant protein complexes. Plant Journal, 2019, 100, 411-429.	5.7	5
29	Leaf Disc Stress Tolerance Assay for Tobacco. Bio-protocol, 2015, 5, .	0.4	5
30	Glyoxalase Pathway and Drought Stress Tolerance in Plants. , 2016, , 379-399.		4
31	Impact of Lockdown Measures and Meteorological Parameters on the COVID-19 Incidence and Mortality Rate in Bangladesh. Infectious Microbes & Diseases, 2021, 3, 41-48.	1.3	4
32	Identification and molecular characterization of a receptor-like protein kinase gene from Corchorus capsularis. Turkish Journal of Biology, 0, , .	0.8	4
33	Genome wide analysis of the heavy-metal-associated (HMA) gene family in tomato and expression profiles under different stresses. Gene, 2022, 835, 146664.	2.2	4
34	Molecular evolution of SUN-domain containing proteins in diverse plant species and their expression profiling in response to developmental and perturbation stimuli. Phytochemistry, 2019, 157, 28-42.	2.9	3
35	Investigating the possible origin and transmission routes of SARS-CoV-2 genomes and variants of concern in Bangladesh. Infection, Genetics and Evolution, 2021, 95, 105057.	2.3	2
36	Development of Multi-epitope Based Subunit Vaccine Against Crimean-Congo Hemorrhagic Fever Virus Using Reverse Vaccinology Approach. International Journal of Peptide Research and Therapeutics, 2022, 28, .	1.9	2

Ајіт Сноѕн

#	Article	IF	CITATIONS
37	Stress Tolerance Assay at the Seed Germination Stage for Tobacco. Bio-protocol, 2015, 5, .	0.4	O
38	Plant Gene Modification by BAC Recombineering. Methods in Molecular Biology, 2022, 2479, 71-84.	0.9	0