Takeo Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1937285/publications.pdf

Version: 2024-02-01

256 papers 8,206 citations

51 h-index 78 g-index

260 all docs

260 docs citations

260 times ranked 6789 citing authors

#	Article	IF	CITATIONS
1	Crystal Structures of Ironâ€Based Oxides and Their Catalytic Efficiencies for the Oxygen Evolution Reaction: A Trend in Alkaline Media. ChemElectroChem, 2022, 9, .	3.4	3
2	Numerical Modeling and Experiment of a Thin-Film Enzyme Electrode with an Enzyme Adsorption Experiment to Design High-Current-Density Biofuel Cells. Industrial & Engineering Chemistry Research, 2022, 61, 4504-4513.	3.7	0
3	Layered Pt-Co alloys: Bulk, surface and nanoparticle analysis, based on DFT. Surface Science, 2022, 721, 122082.	1.9	1
4	Alkaline Formate Oxidation with Colloidal Palladium–Tin Alloy Nanocrystals. ACS Applied Energy Materials, 2022, 5, 266-277.	5.1	8
5	Issues of using inorganic proton conductor in the electrodes of polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2022, 47, 15056-15064.	7.1	1
6	Comprehensive simulation to uncover the ideal properties of a hollow fiber forward osmosis membrane module for the seawater desalination process. Desalination, 2022, 538, 115923.	8.2	4
7	Precise surface modification of porous membranes with well-defined zwitterionic polymer for antifouling applications. Journal of Membrane Science, 2021, 619, 118772.	8.2	21
8	Pure Water Solid Alkaline Water Electrolyzer Using Fully Aromatic and High-Molecular-Weight Poly(fluorene- <i>alt</i> -tetrafluorophenylene)-trimethyl Ammonium Anion Exchange Membranes and Ionomers. ACS Applied Energy Materials, 2021, 4, 1053-1058.	5.1	45
9	Metal oxide electrocatalyst support for carbon-free durable electrodes with excellent corrosion resistance at high potential conditions. Sustainable Energy and Fuels, 2021, 5, 1374-1378.	4.9	6
10	An enhanced electrochemical CO ₂ reduction reaction on the SnO _x –PdO surface of SnPd nanoparticles decorated on N-doped carbon fibers. Catalysis Science and Technology, 2021, 11, 143-151.	4.1	16
11	A cobalt–manganese layered oxide/graphene composite as an outstanding oxygen evolution reaction electrocatalyst. Chemical Communications, 2021, 57, 9052-9055.	4.1	9
12	Suitable acid groups and density in electrolytes to facilitate proton conduction. Physical Chemistry Chemical Physics, 2021, 23, 23778-23786.	2.8	4
13	Efficient Oxygen Evolution Electrocatalysis on CaFe ₂ O ₄ and Its Reaction Mechanism. ACS Applied Energy Materials, 2021, 4, 3057-3066.	5.1	22
14	Retention of activity and secondary structure of hyperthermophilic laccase adsorbed on carbon black. JPhys Energy, 2021, 3, 034002.	5.3	2
15	Numerical Modeling for Sensitive and Rapid Molecular Detection by Membrane-Based Immunosensors. Analytical Chemistry, 2021, 93, 7210-7219.	6.5	2
16	Comprehensive Structural Descriptor for Electrocatalytic Oxygen Evolution Activities of Iron Oxides. ChemElectroChem, 2021, 8, 4466-4471.	3.4	6
17	Tuning Palladium Nickel Phosphide toward Efficient Oxygen Evolution Performance. ACS Applied Energy Materials, 2020, 3, 879-888.	5.1	21
18	Connected iridium nanoparticle catalysts coated onto silica with high density for oxygen evolution in polymer electrolyte water electrolysis. Nanoscale Advances, 2020, 2, 171-175.	4.6	22

#	Article	IF	CITATIONS
19	Carbon-Free Platinum–Iron Nanonetworks with Chemically Ordered Structures as Durable Oxygen Reduction Electrocatalysts for Polymer Electrolyte Fuel Cells. ACS Applied Nano Materials, 2020, 3, 9912-9923.	5.0	11
20	Effect of Metal Coordination Fashion on Oxygen Electrocatalysis of Cobalt–Manganese Oxides. ACS Omega, 2020, 5, 29388-29397.	3.5	16
21	Highly conductive mechanically robust high <i>M</i> _w polyfluorene anion exchange membrane for alkaline fuel cell and water electrolysis application. Polymer Chemistry, 2020, 11, 3812-3820.	3.9	35
22	Template assisted synthesis of Ni,N co-doped porous carbon from Ni incorporated ZIF-8 frameworks for electrocatalytic oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 12343-12354.	2.8	15
23	Fe3+ stabilized 3D cross-linked glycine-melamine formaldehyde networks as precursor for highly efficient oxygen reduction catalyst in alkaline media. Materials Letters, 2020, 264, 127365.	2.6	4
24	Membrane–Based Biosensor with Efficient Molecular Recognition in Small Pores. Membrane, 2020, 45, 308-314.	0.0	0
25	Ultrahigh Electrocatalytic Activity of an Iron-Based Bimetallic Oxide for Oxygen Evolution Reaction in Alkaline. ECS Meeting Abstracts, 2020, MA2020-02, 2419-2419.	0.0	0
26	Voltammetrically Deposited Nife on Modified Ni Foam As an Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ECS Meeting Abstracts, 2020, MA2020-02, 1396-1396.	0.0	0
27	Carbon-Free Connected Platinum–Iron Catalysts with Enhanced Chemically Ordered Structures As Durable Oxygen Reduction Electrocatalysts for PEFCs. ECS Meeting Abstracts, 2020, MA2020-02, 2316-2316.	0.0	1
28	Strategy for Improving Oxygen Evolution Performance of Noble Metal Catalysts for Alkaline Water Electrolysis. ECS Meeting Abstracts, 2020, MA2020-02, 2436-2436.	0.0	0
29	Carbon-Free Connected Ir-Ru Nanoparticle Catalysts for Polymer-Electrolyte Water Electrolysis. ECS Meeting Abstracts, 2020, MA2020-02, 2474-2474.	0.0	0
30	Binary Pdâ^'Ni Nanoalloy Particles over Carbon Support with Superior Alkaline Formate Fuel Electrooxidation Performance. ChemCatChem, 2019, 11, 4731-4737.	3.7	29
31	Proton diffusion facilitated by indirect interactions between proton donors through several hydrogen bonds. Chemical Physics Letters, 2019, 731, 136627.	2.6	10
32	Catalyst Slurry Preparation Using a Hydrodynamic Cavitation Dispersion Method for Polymer Electrolyte Fuel Cells. Industrial & Electrolyte Fuel Cells. Industri	3.7	19
33	Flow-Based Immunosensing Using the Pore Channel of a Porous Membrane As a Reaction Space. Analytical Chemistry, 2019, 91, 14178-14182.	6.5	6
34	Autonomous Shrinking/Swelling Phenomenon Driven By Macromolecular Interchain Cross-Linking via β-Cyclodextrin–Triazole Complexation. Macromolecules, 2019, 52, 8551-8562.	4.8	4
35	Highly stable membrane–electrode assembly using ether-linkage-free spirobifluorene-based aromatic polyelectrolytes for direct formate solid alkaline fuel cells. Journal of Power Sources, 2019, 438, 226997.	7.8	16
36	Electro-oxidation competency of palladium nanocatalysts over ceria–carbon composite supports during alkaline ethylene glycol oxidation. Catalysis Science and Technology, 2019, 9, 493-501.	4.1	28

#	Article	IF	CITATIONS
37	Extremely Active Hydrogen Evolution Catalyst Electrochemically Generated from a Ruthenium-Based Perovskite-Type Precursor. ACS Applied Energy Materials, 2019, 2, 956-960.	5.1	34
38	Highly durable spirobifluorene-based aromatic anion conducting polymer for a solid ionomer of alkaline fuel cells and water electrolysis cells. Journal of Materials Chemistry A, 2019, 7, 2219-2224.	10.3	33
39	Chemical durability of thin pore-filling membrane in open-circuit voltage hold test. International Journal of Hydrogen Energy, 2019, 44, 28996-29001.	7.1	10
40	Development of Polymer Electrolyte Membranes for Solid Alkaline Fuel Cells. Nanostructure Science and Technology, 2019, , 309-350.	0.1	1
41	Development of Highly Durable Anion Conductive Membrane with All-Aromatic Backbone for Alkaline Fuel Cell Application. ECS Meeting Abstracts, 2019, , .	0.0	0
42	Anion Exchange Membrane with Thermally Convertible Unit for Alkaline Water Electrolyzer. ECS Meeting Abstracts, 2019, , .	0.0	0
43	Influence of Elemental Compositions and Crystalline Structures on Electrocatalytic Activity of Fe-Based Oxides for Oxygen Evolution Reaction in Alkaline Water Splitting. ECS Meeting Abstracts, 2019, , .	0.0	0
44	Necessity of Hydrogen Society Using Renewable Energies and Electrocatalyst Technologies for Fuel Cells. Journal of the Society of Powder Technology, Japan, 2019, 56, 100-108.	0.1	0
45	Systematic Material Design of Pore-filling Membranes and Their Development. Seikei-Kakou, 2019, 31, 442-446.	0.0	0
46	Evaluation of performance and durability of platinum–iron–copper with L10 ordered face-centered tetragonal structure as cathode catalysts in polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 2018, 48, 773-782.	2.9	13
47	Germanium-incorporated lithium silicate composites as highly efficient low-temperature sorbents for CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 7913-7921.	10.3	30
48	Refined Structural Analysis of Connected Platinum–Iron Nanoparticle Catalysts with Enhanced Oxygen Reduction Activity. ACS Applied Energy Materials, 2018, 1, 324-330.	5.1	15
49	Control of Target Molecular Recognition in a Small Pore Space with Biomoleculeâ€Recognition Gating Membrane. Small, 2018, 14, e1702267.	10.0	13
50	Correlation between the carbon structures and their tolerance to carbon corrosion as catalyst supports for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2018, 43, 6406-6412.	7.1	26
51	Melamine formaldehyde–metal organic gel interpenetrating polymer network derived intrinsic Fe–N-doped porous graphitic carbon electrocatalysts for oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 18690-18701.	2.8	19
52	Effect of a Sulfonated Benzothiadiazole Unit on the Morphology and Ion Conduction Behavior of a Polymer Electrolyte Membrane. Industrial & Engineering Chemistry Research, 2018, 57, 16095-16102.	3.7	7
53	Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells. Journal of Power Sources, 2018, 394, 67-73.	7.8	35
54	Alkali-resistant Anion Exchange Membranes with Grafted Polyelectrolyte for Fuel Cells. Chemistry Letters, 2018, 47, 857-859.	1.3	4

#	Article	IF	Citations
55	Development of a novel durable aromatic anion exchange membrane using a thermally convertible precursor. Chemical Communications, 2018, 54, 10820-10823.	4.1	10
56	Cobalt-Modified Palladium Bimetallic Catalyst: A Multifunctional Electrocatalyst with Enhanced Efficiency and Stability toward the Oxidation of Ethanol and Formate in Alkaline Medium. ACS Applied Energy Materials, 2018, 1, 4140-4149.	5.1	67
57	Molecular Sensing: Control of Target Molecular Recognition in a Small Pore Space with Biomolecule-Recognition Gating Membrane (Small 18/2018). Small, 2018, 14, 1870082.	10.0	3
58	Morphological Ensembles of Nâ€Doped Porous Carbon Derived from ZIFâ€8/Feâ€Graphene Nanocomposites: Processing and Electrocatalytic Studies. ChemistrySelect, 2018, 3, 8688-8697.	1.5	8
59	Micro-structure change of polycrystalline FAU zeolite membranes during a hydrothermal synthesis in a dilute solution. Microporous and Mesoporous Materials, 2018, 272, 53-60.	4.4	10
60	Miniature Fuel Cell with Monolithically Fabricated Si Electrodes - Application of a Polymer Electrolyte Membrane with Adapted Shape. ECS Meeting Abstracts, 2018, , .	0.0	0
61	Development of Highly Conductive and Highly Durable All-Aromatic Anion Exchange Membranes By Using Thermally Convertible Precursor Polymer. ECS Meeting Abstracts, 2018, , .	0.0	0
62	Carbon-Free Connected Ru, Ir Based Nanoparticle Catalysts for Polymer-Electrolyte Water Electrolysis. ECS Meeting Abstracts, 2018, , .	0.0	0
63	Highly-Durable Membrane Electrode Assembly for Direct Formate Solid Alkaline Fuel Cells. ECS Meeting Abstracts, 2018, , .	0.0	1
64	Proton Conductivity of Organic–Inorganic Electrolyte for Polymer Electrolyte Fuel Cell. Chemistry Letters, 2017, 46, 204-206.	1.3	6
65	Improvement in the solid-state alkaline fuel cell performance through efficient water management strategies. Journal of Power Sources, 2017, 345, 221-226.	7.8	45
66	Direct synthesis of a carbon nanotube interpenetrated doped porous carbon alloy as a durable Pt-free electrocatalyst for the oxygen reduction reaction in an alkaline medium. Sustainable Energy and Fuels, 2017, 1, 1524-1532.	4.9	16
67	Communication—Acid-Treated Nickel-Rich Platinum–Nickel Alloys for Oxygen Reduction and Methanol Oxidation Reactions in Alkaline Media. Journal of the Electrochemical Society, 2017, 164, F858-F860.	2.9	8
68	Chitosan Intercalated Metal Organic Gel as a Green Precursor of Fe Entrenched and Fe Distributed N-Doped Mesoporous Graphitic Carbon for Oxygen Reduction Reaction. ChemistrySelect, 2017, 2, 8762-8770.	1.5	12
69	Analysis of the degradation mechanism of the polyarylene ether anion-exchange membrane for alkaline fuel cell and water-splitting cell applications. New Journal of Chemistry, 2017, 41, 8036-8044.	2.8	32
70	Novel aromatic proton exchange membranes based on thiazolothiazole units. Polymer Journal, 2017, 49, 745-749.	2.7	2
71	In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles. Journal of Power Sources, 2017, 362, 291-298.	7.8	30
72	Non-equilibrium Thermodynamic Model of a Highly Permeable Forward Osmosis Membrane. Journal of Chemical Engineering of Japan, 2017, 50, 618-631.	0.6	5

#	Article	IF	CITATIONS
73	Thin Pore-Filling Electrolyte Membranes with Low EW Perfluorosulfonic Acid Ionomer and Their PEFC Performances. ECS Meeting Abstracts, 2017, , .	0.0	0
74	Structural Control of Carbon-Free Catalyst Layer Using Connected Platinum-Iron Nanoparticle Catalyst for Improved Mass-Transport in Polymer Electrolyte Fuel Cells. ECS Meeting Abstracts, 2017, , .	0.0	0
75	Correlation between Activity and Molecular Structure around the Active Center of Cytochrome P450cam Conjugates. Journal of Chemical Engineering of Japan, 2016, 49, 475-480.	0.6	0
76	Effect of Solution Concentration on Structure and Permeation Properties of ZIF-8 Membranes for Propylene/Propane Separation. Journal of Chemical Engineering of Japan, 2016, 49, 97-103.	0.6	11
77	Ether cleavage-triggered degradation of benzyl alkylammonium cations for polyethersulfone anion exchange membranes. Physical Chemistry Chemical Physics, 2016, 18, 12009-12023.	2.8	98
78	Quantum chemical approach for highly durable anion exchange groups in solid-state alkaline fuel cells. RSC Advances, 2016, 6, 36269-36272.	3.6	14
79	Morphologically and compositionally tuned lithium silicate nanorods as high-performance carbon dioxide sorbents. Journal of Materials Chemistry A, 2016, 4, 16928-16935.	10.3	42
80	Graphene Oxide Sheathed ZIF-8 Microcrystals: Engineered Precursors of Nitrogen-Doped Porous Carbon for Efficient Oxygen Reduction Reaction (ORR) Electrocatalysis. ACS Applied Materials & Linterfaces, 2016, 8, 29373-29382.	8.0	139
81	Poly(p-phenylene sulfonicÂacid-ran-2,5-benzophenone) pore-filling membranes with highly packed acid structure and their polymer electrolyte fuel cell performances. International Journal of Hydrogen Energy, 2016, 41, 21461-21469.	7.1	8
82	Discrete Self-Assembly and Functionality of Guest Molecules in an Organic Framework. Chemistry of Materials, 2016, 28, 5847-5854.	6.7	16
83	Platinum–Iron–Nickel Trimetallic Catalyst with Superlattice Structure for Enhanced Oxygen Reduction Activity and Durability. Industrial & Engineering Chemistry Research, 2016, 55, 11458-11466.	3.7	33
84	An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane backbone. Journal of Materials Chemistry A, 2016, 4, 17655-17659.	10.3	40
85	Development of novel polymer electrolyte membranes based on a benzothiadiazole unit. RSC Advances, 2016, 6, 99433-99436.	3.6	4
86	Nanostructural Control and Performance Analysis of Carbon-Free Catalyst Layers Using Nanoparticle-Connected Hollow Capsules for PEFCs. Journal of the Electrochemical Society, 2016, 163, F927-F932.	2.9	13
87	Response Sensitivity of a Gating Membrane Related to Grafted Polymer Characteristics. Industrial & Lamp; Engineering Chemistry Research, 2016, 55, 1575-1581.	3.7	8
88	Functionalized Membranes Inspired from Bio–systems : Hierarchical Structure and Functionalization of Membrane Materials. Membrane, 2016, 41, 240-243.	0.0	0
89	Enhanced electroreduction of oxygen and stripping voltammetry on PdPt nanoparticles. AIP Conference Proceedings, 2015, , .	0.4	0
90	Effect of Temperature on Synthesis of ZIF-8 Membranes for Propylene/propane Separation by Counter Diffusion Method. Journal of the Japan Petroleum Institute, 2015, 58, 237-244.	0.6	20

#	Article	lF	Citations
91	Development of an aptamer-functionalized molecular recognition gating membrane targeting a specific protein on the basis of the aggregation phenomena of DNA–PNIPAM. Polymer, 2015, 62, 86-93.	3.8	12
92	Layered Double Hydroxide as a Potential Electrolyte Material in Solid-State Alkaline Fuel Cell Catalyst Layer. ECS Electrochemistry Letters, 2015, 4, F47-F49.	1.9	1
93	ZIF-8 membranes prepared at miscible and immiscible liquid–liquid interfaces. Microporous and Mesoporous Materials, 2015, 206, 75-80.	4.4	30
94	Correlating electronic structure and chemical durability of sulfonated poly(arylene ether sulfone)s. Journal of Power Sources, 2015, 279, 48-54.	7.8	14
95	Cross-sectional observation of nanostructured catalyst layer of polymer electrolyte fuel cell using FIB/SEM. Journal of Power Sources, 2015, 280, 210-216.	7.8	24
96	Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16311-16321.	8.0	66
97	Aniosotropically Organized LDH on PVDF: A Geometrically Templated Electrospun Substrate for Advanced Anion Conducting Membranes. ACS Applied Materials & Interfaces, 2015, 7, 6397-6401.	8.0	28
98	Synthesis and Property of Semicrystalline Anion Exchange Membrane with Well-Defined Ion Channel Structure. Macromolecules, 2015, 48, 2576-2584.	4.8	37
99	CO ₂ Absorption Studies on Mixed Alkali Orthosilicates Containing Rare-Earth Second-Phase Additives. Journal of Physical Chemistry C, 2015, 119, 5319-5326.	3.1	42
100	A durable anion conducting membrane with packed anion-exchange sites and an aromatic backbone for solid-state alkaline fuel cells. Polymer Chemistry, 2015, 6, 7964-7973.	3.9	25
101	Connected nanoparticle catalysts possessing a porous, hollow capsule structure as carbon-free electrocatalysts for oxygen reduction in polymer electrolyte fuel cells. Energy and Environmental Science, 2015, 8, 3545-3549.	30.8	67
102	Microstructural pore analysis of the catalyst layer in a polymer electrolyte membrane fuel cell: A combination of resin pore-filling and FIB/SEM. International Journal of Hydrogen Energy, 2015, 40, 15663-15671.	7.1	29
103	Thickness Reduction of the Zeolitic Imidazolate Framework-8 Membrane by Controlling the Reaction Rate during the Membrane Preparation. Journal of Chemical Engineering of Japan, 2014, 47, 770-776.	0.6	20
104	Plasmaâ€Induced Graft Polymerization Inside Pores of Porous Substrates Assisted by an Infiltration Agent in Acidic Conditions. Plasma Processes and Polymers, 2014, 11, 306-314.	3.0	8
105	Reducing Physical Adsorption of Enzymes by Surface Modification of Carbon Black for High-Current-Density Biofuel Cells. Journal of the Electrochemical Society, 2014, 161, H3095-H3099.	2.9	7
106	The proton conduction mechanism in a material consisting of packed acids. Chemical Science, 2014, 5, 4878-4887.	7.4	72
107	Diffusive separation of propylene/propane with ZIF-8 membranes. Journal of Membrane Science, 2014, 450, 215-223.	8.2	172
108	Logistic gate-like permeable property of gating membrane with ion-recognition polyampholyte. Polymer, 2014, 55, 1412-1419.	3.8	9

#	Article	IF	CITATIONS
109	Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells. Journal of Power Sources, 2014, 260, 338-348.	7.8	46
110	Amino acid inspired microscale organization of metallic nanocrystals. Journal of Materials Chemistry A, 2014, 2, 100-106.	10.3	6
111	DNA molecular recognition of intercalators affects aggregation of a thermoresponsive polymer. Polymer Chemistry, 2014, 5, 4612-4616.	3.9	8
112	Enhanced activity and durability for the electroreduction of oxygen at a chemically ordered intermetallic PtFeCo catalyst. RSC Advances, 2014, 4, 27510.	3.6	52
113	Enhanced CO ₂ absorption kinetics in lithium silicate platelets synthesized by a sol–gel approach. Journal of Materials Chemistry A, 2014, 2, 12792.	10.3	87
114	Highly active and durable chemically ordered Ptâ€"Feâ€"Co intermetallics as cathode catalysts of membraneâ€"electrode assemblies in polymer electrolyte fuel cells. Journal of Power Sources, 2014, 271, 346-353.	7.8	37
115	Mg–Al layered double hydroxides: a correlation between synthesis-structure and ionic conductivity. RSC Advances, 2014, 4, 41051-41058.	3.6	22
116	Differentiating Grotthuss Proton Conduction Mechanisms by Nuclear Magnetic Resonance Spectroscopic Analysis of Frozen Samples. Analytical Chemistry, 2014, 86, 9362-9366.	6.5	59
117	Development of Redox Polymer Grafted onto Carbon Black Using 2,2′-Azinobis(3-ethylbenzothiazoline-6-sulfonic Acid) as a Biocathode. Journal of Chemical Engineering of Japan, 2014, 47, 704-710.	0.6	1
118	Molecular recognition moiety and its target biomolecule interact in switching enzyme activity. Journal of Bioscience and Bioengineering, 2013, 115, 639-644.	2.2	3
119	Mathematical modeling of molecular recognition by an ion-gating membrane oscillator. Journal of Membrane Science, 2013, 448, 231-239.	8.2	3
120	Zn2+ substitution effects in layered double hydroxide (Mg($1\hat{a}^2x$)Znx)2Al: textural properties, water content and ionic conductivity. Journal of Materials Chemistry A, 2013, 1, 13348.	10.3	20
121	Control of the poly(N-isopropylacrylamide) phase transition via a single strand–double strand transformation of conjugated DNA. Soft Matter, 2013, 9, 3331.	2.7	21
122	Metal–organic framework membranes with layered structure prepared within the porous support. RSC Advances, 2013, 3, 14233.	3.6	33
123	Non-humidified proton conduction between a Lewis acid–base pair. Physical Chemistry Chemical Physics, 2013, 15, 13814.	2.8	14
124	Effect of length of molecular recognition moiety on enzymatic activity switching. Journal of Bioscience and Bioengineering, 2013, 116, 433-437.	2.2	3
125	Mg–Al layered double hydroxides containing glycine betaine as low humidity-dependent anion conducting electrolyte material for Solid State Alkaline Fuel Cell (SAFC). Journal of Power Sources, 2013, 230, 225-229.	7.8	26
126	Enhanced oxygen reduction reaction by bimetallic CoPt and PdPt nanocrystals. RSC Advances, 2013, 3, 10487.	3.6	37

#	Article	IF	CITATIONS
127	Water Movement in a Solid-State Alkaline Fuel Cell Affected by the Anion-Exchange Pore-Filling Membrane Properties. Journal of Physical Chemistry C, 2013, 117, 16791-16801.	3.1	27
128	Introduction of Size-Controlled Nafion/ZrO2Nanocomposite Electrolyte into Primary Pores for High Pt Utilization in PEFCs. Journal of the Electrochemical Society, 2013, 160, F129-F134.	2.9	6
129	General Diffusion Model for Polymeric Systems Based on Microscopic Molecular Collisions and Random Walk Movement. Industrial & Engineering Chemistry Research, 2013, 52, 9940-9945.	3.7	4
130	Switchable Aggregation Phenomena of DNA-conjugated Poly(<i>N</i> -isopropylacrylamide) Driven by Transformation between ssDNA and dsDNA with Control of DNA Charges and Flexibility. Chemistry Letters, 2013, 42, 1568-1570.	1.3	4
131	Improvement in Thermal Stability of Anion-exchange Membranes for Fuel Cell Applications by Controlling Water State. Chemistry Letters, 2013, 42, 14-16.	1.3	8
132	Fabrication of Functional Membrane with Activated Ester via Plasma-Induced Graft Polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 503-506.	0.3	1
133	Fabrication of Precursor Membrane with Reactive Groups via Plasma-Induced Graft Polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 555-557.	0.3	1
134	The effect of particle size and surface area on the ion conductivity of layered double hydroxide. Electrochemistry Communications, 2012, 25, 50-53.	4.7	37
135	Conversion of a molecular signal into a visual color based on the permeation of nanoparticles through a biomolecule-recognition gating membrane. Analytical Methods, 2012, 4, 2635.	2.7	7
136	Systematic Evaluation of Polymer Electrolyte Fuel Cell Electrodes with Hydrocarbon Polyelectrolytes by Considering the Polymer Properties. Journal of Physical Chemistry C, 2012, 116, 1422-1428.	3.1	7
137	Direction and Management of Water Movement in Solid-State Alkaline Fuel Cells. Journal of Physical Chemistry C, 2012, 116, 7650-7657.	3.1	22
138	Influence of Spacer Length between Actuator and Sensor on Their Mutual Communications in Poly($\langle i\rangle N\langle i\rangle$ -Isopropylacrylamide- $\langle i\rangle co\langle i\rangle$ -β-Cyclodextrin), an Autonomous Coordinative Shrinking/Swelling Polymer. Macromolecules, 2012, 45, 9742-9750.	4.8	20
139	Highly Active Bimetallic PdPt and CoPt Nanocrystals for Methanol Electro-oxidation. Journal of Physical Chemistry C, 2012, 116, 7464-7470.	3.1	76
140	Biomolecule-Recognition Gating Membrane Using Biomolecular Cross-Linking and Polymer Phase Transition. Analytical Chemistry, 2011, 83, 9226-9229.	6.5	25
141	Physical Re-Examination of Parameters on a Molecular Collisions-Based Diffusion Model for Diffusivity Prediction in Polymers. Journal of Physical Chemistry B, 2011, 115, 15181-15187.	2.6	6
142	Theoretical Studies on Proton Transfer among a High Density of Acid Groups: Surface of Zirconium Phosphate with Adsorbed Water Molecules. Journal of Physical Chemistry C, 2011, 115, 5599-5606.	3.1	26
143	Grafting of Polyelectrolyte on Porous Substrate by Plasma-induced Polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 471-473.	0.3	1
144	The Effect of Methanol Crossover on the Cathode Overpotential of DMFCs. Fuel Cells, 2011, 11, 394-403.	2.4	19

#	Article	IF	Citations
145	Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells. Journal of Membrane Science, 2011, 373, 107-111.	8.2	56
146	Design of Gas Barrier Membrane / Vapor Permeation Membrane - Approach from Diffusivity Prediction Model in Polymer Matrices Membrane, 2011, 36, 71-78.	0.0	0
147	Fabrication of Protein Renaturation Facilitating Membrane Using Plasma Graft Pore Filling Technique. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 571-573.	0.3	2
148	Theoretical Studies of the Mechanism of Proton Transfer at the Surface of Zirconium Phosphate. Chemistry Letters, 2010, 39, 736-737.	1.3	11
149	Reentrant phase transition behavior and sensitivity enhancement of a molecular recognition ion gating membrane in an aqueous ethanol solution. Journal of Membrane Science, 2010, 348, 369-375.	8.2	6
150	Isolation and analysis of a grafted polymer onto a straight cylindrical pore in a thermal-responsive gating membrane and elucidation of its permeation behavior. Journal of Membrane Science, 2010, 352, 22-31.	8.2	40
151	Effect of Platinum Particle Size on Catalyst Activity in Practical Gas-Phase PEFC MEAs. , 2010, , .		0
152	Prediction of Self-Diffusivity in Multicomponent Polymeric Systems Using Shell-Like Free Volume Theory. Industrial & Engineering Chemistry Research, 2010, 49, 11676-11681.	3.7	11
153	Evaluation of Immobilized Enzyme in a High-Surface-Area Biofuel Cell Electrode Made of Redox-Polymer-Grafted Carbon Black. Industrial & Engineering Chemistry Research, 2010, 49, 6394-6398.	3.7	16
154	Novel mild conversion routes of surface-modified nano zirconium oxide precursor to layered proton conductors. Journal of Materials Chemistry, 2010, 20, 6239.	6.7	12
155	High-Voltage Operation of Polymer Electrolyte Fuel Cells under Low Humidity Condition with Pt-Co Catalyst. Journal of Chemical Engineering of Japan, 2010, 43, 623-626.	0.6	0
156	Morphological Investigations of Surface Modified Zirconia Precursor by Perfluorosulfonated lonomer Using Nano Capping Technique. Journal of Chemical Engineering of Japan, 2009, 42, 918-929.	0.6	6
157	Analysis of Oxygen Reduction Reaction Activity of Pt/C Catalysts for Actual PEFC MEAs. Journal of Chemical Engineering of Japan, 2009, 42, 39-46.	0.6	13
158	Polymer Electrolyte Fuel Cell Modeling Considering Catalyst Activity and a Microscopic Reaction Phenomenon: Coverage of Oxygen-Containing Species. Journal of Chemical Engineering of Japan, 2009, 42, 771-781.	0.6	5
159	Modelling of Reaction and Diffusion Processes in a Highâ€surfaceâ€area Biofuel Cell Electrode Made of Redox Polymerâ€grafted Carbon. Fuel Cells, 2009, 9, 37-43.	2.4	29
160	Lithium based ceramic materials and membranes for high temperature CO2 separation. Progress in Materials Science, 2009, 54, 511-541.	32.8	134
161	Rapid Proton Conduction through Unfreezable and Bound Water in a Wholly Aromatic Pore-Filling Electrolyte Membrane. Journal of Physical Chemistry B, 2009, 113, 4656-4663.	2.6	56
162	Reverse Response of an Ion-Recognition Polyampholyte to Specific Ion Signals at Different pHs. Macromolecules, 2009, 42, 980-986.	4.8	21

#	Article	IF	CITATIONS
163	Development of Molecular Recognition Membrane showing Autonomous Adsorption-Desorption Phenomenon. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 473-476.	0.3	2
164	Modeling for PEFC MEAs Based on Reaction Rate on Pt Surface and Microstructures of Catalyst Layers. Journal of Chemical Engineering of Japan, 2009, 42, 616-631.	0.6	15
165	A New Free Volume Theory Based on Microscopic Concept of Molecular Collisions for Penetrant Self-Diffusivity in Polymers. Journal of Chemical Engineering of Japan, 2009, 42, 86-94.	0.6	10
166	Quantitative analysis of oxygen-containing species adsorbed on the Pt surface of a polymer electrolyte fuel cell membrane electrode assembly electrode using stripping voltammetry. Journal of Power Sources, 2008, 185, 217-221.	7.8	20
167	The degradation mechanism of sulfonated poly(arylene ether sulfone)s in an oxidative environment. Journal of Membrane Science, 2008, 325, 633-640.	8.2	61
168	Systematic Design of Polymer Electrolyte Membranes for Fuel Cells Using a Pore-Filling Membrane Concept., 2008, , 1-15.		1
169	Functionalization of Porous Membranes by Using Cold Plasma. Membrane, 2008, 33, 46-53.	0.0	0
170	Analysis of Pore Size Using a Straight-Pore Molecular Recognition Ion Gating Membrane. Journal of Chemical Engineering of Japan, 2008, 41, 766-770.	0.6	5
171	Nanoscale Morphological Control of PEFC Cathode Electrodes by Introducing Proton Conducting Groups onto Platinum-supported Carbon Black. IEEJ Transactions on Fundamentals and Materials, 2008, 128, 559-562.	0.2	1
172	Functionalization of a Cylindrical Pore Membrane by Plasma Graft Polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 239-240.	0.3	0
173	Development of Enzyme-Encapsulated Microcapsule Reactors with Ion-Responsive Shell Membranes. Journal of Chemical Engineering of Japan, 2007, 40, 590-597.	0.6	5
174	Novel Preparation Method for Obtaining pH-Responsive Coreâ^'Shell Microcapsule Reactors. Industrial & Lamp; Engineering Chemistry Research, 2007, 46, 124-130.	3.7	37
175	Immobilization of Hydroquinone through a Spacer to Polymer Grafted on Carbon Black for a High-Surface-Area Biofuel Cell Electrode. Journal of Physical Chemistry B, 2007, 111, 10312-10319.	2.6	65
176	An Extremely Low Methanol Crossover and Highly Durable Aromatic Pore-Filling Electrolyte Membrane for Direct Methanol Fuel Cells. Advanced Materials, 2007, 19, 592-596.	21.0	181
177	Lithium silicate based membranes for high temperature CO2 separation. Journal of Membrane Science, 2007, 294, 16-21.	8.2	81
178	Low methanol crossover and high performance of DMFCs achieved with a pore-filling polymer electrolyte membrane. Journal of Power Sources, 2007, 174, 170-175.	7.8	29
179	Development and Modification of a PEMFC Electrode by Using a Hydrocarbon Ionomer for High Utilization of Catalyst. Journal of Chemical Engineering of Japan, 2007, 40, 773-779.	0.6	3
180	High-Surface-Area Three-Dimensional Biofuel Cell Electrode Using Redox-Polymer-Grafted Carbon. Industrial & Discourse Engineering Chemistry Research, 2006, 45, 3050-3058.	3.7	59

#	Article	IF	CITATIONS
181	Controlled Release of Model Drugs through a Molecular Recognition Ion Gating Membrane in Response to a Specific Ion Signal. Langmuir, 2006, 22, 3945-3949.	3.5	69
182	An Autonomous Phase Transitionâ^'Complexation/Decomplexation Polymer System with a Molecular Recognition Property. Macromolecules, 2006, 39, 2614-2620.	4.8	82
183	Separation and Recovery of Volatile Organic CompoundsPVOC)by Membranes. Membrane, 2006, 31, 30-3	10.0	2
184	Osmotic Pressure Expression with Several Guest Ions on a Molecular Recognition Ion Gating Membrane. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 251-252.	0.3	3
185	Effect of the pore surface modification of an inorganic substrate on the plasma-grafting behavior of pore-filling-type organic/inorganic composite membranes. Journal of Polymer Science Part A, 2006, 44, 846-856.	2.3	23
186	Proton conducting phosphated zirconia–sulfonated polyether sulfone nanohybrid electrolyte for low humidity, wide-temperature PEMFC operation. Electrochemistry Communications, 2006, 8, 133-136.	4.7	55
187	Permeation properties of templated and template-free ZSM-5 membranes. Journal of Membrane Science, 2006, 274, 102-107.	8.2	40
188	Nonlinear Self-Excited Oscillation of a Synthetic Ion-Channel-Inspired Membrane. Angewandte Chemie - International Edition, 2006, 45, 5630-5633.	13.8	42
189	Nanoscale Morphological Control of Anode Electrodes by Grafting of Methylsulfonic Acid Groups onto Platinum–Ruthenium-Supported Carbon Blacks. Journal of the Electrochemical Society, 2006, 153, A1417.	2.9	15
190	Molecular Recognition Gating Membranes Made by Plasma-Graft Polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2005, 18, 229-232.	0.3	8
191	Development of crosslinked plasma-graft filling polymer membranes for the reverse osmosis of organic liquid mixtures. Journal of Membrane Science, 2005, 265, 101-107.	8.2	20
192	DMFC performances using a pore-filling polymer electrolyte membrane for portable usages. Electrochemistry Communications, 2005, 7, 730-734.	4.7	89
193	Regulation of cell adhesion using a signal-responsive membrane substrate. Biotechnology and Bioengineering, 2005, 91, 237-243.	3.3	25
194	Role of vacuum ultraviolet irradiation in plasma-induced graft polymerization in the pore-filling polymerization of porous materials. Journal of Polymer Science Part A, 2005, 43, 2068-2074.	2.3	17
195	Systematic Material Design for Bio-system Inspired Molecular Recognition Membranes. Membrane, 2005, 30, 124-131.	0.0	1
196	Development of a Regenerable Cell Culture System That Senses and Releases Dead Cells. Langmuir, 2005, 21, 4043-4049.	3.5	53
197	Dual-lon Conducting Lithium Zirconate-Based Membranes for High Temperature CO2 Separation. Journal of Chemical Engineering of Japan, 2005, 38, 322-328.	0.6	29
198	Performance of a Pore-Filling Electrolyte Membrane in Hydrogen-Oxygen PEFC. Electrochemical and Solid-State Letters, 2004, 7, A385.	2.2	17

#	Article	IF	Citations
199	Processing of Lithium Zirconate for Applications in Carbon Dioxide Separation: Structure and Properties of the Powders. Journal of the American Ceramic Society, 2004, 87, 68-74.	3.8	101
200	Stability Improvement of Rh/\hat{l}^3 -Al2O3Catalyst Layer by Ceria Doping for Steam Reforming in an Integrated Catalytic Membrane Reactor System. Catalysis Letters, 2004, 92, 181-187.	2.6	36
201	Morphological control of PEMFC electrode by graft polymerization of polymer electrolyte onto platinum-supported carbon black. Journal of Power Sources, 2004, 138, 25-30.	7.8	37
202	Osmotic Pressure Control in Response to a Specific Ion Signal at Physiological Temperature Using a Molecular Recognition Ion Gating Membrane. Journal of the American Chemical Society, 2004, 126, 6202-6203.	13.7	71
203	Response Mechanism of a Molecular Recognition Ion Gating Membrane. Macromolecules, 2004, 37, 3407-3414.	4.8	65
204	Title is missing!. Catalysis Letters, 2003, 86, 273-278.	2.6	58
205	Polymer Electrolyte Membranes with a Pore-Filling Structure for a Direct Methanol Fuel Cell. Advanced Materials, 2003, 15, 1198-1201.	21.0	121
206	Thermoresponsive transport through porous membranes with grafted PNIPAM gates. AICHE Journal, 2003, 49, 896-909.	3.6	130
207	Study of SPG membrane emulsification processes for the preparation ofÂmonodisperse core–shell microcapsules. Journal of Colloid and Interface Science, 2003, 265, 187-196.	9.4	84
208	Application of dense membrane theory for differential permeation of vegetable oil constituents. Journal of Food Engineering, 2003, 60, 249-256.	5.2	25
209	Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell. Journal of Membrane Science, 2003, 214, 283-292.	8.2	174
210	Prediction and estimation of solvent diffusivities in polyacrylate and polymethacrylates. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1393-1400.	2.1	23
211	New morphological control for thick, porous membranes with a plasma graft-filling polymerization. Journal of Polymer Science Part A, 2003, 41, 1216-1224.	2.3	25
212	Development of a Molecular Recognition Separation Membrane Using Cyclodextrin Complexation Controlled by Thermosensitive Polymer Chains. Industrial & Engineering Chemistry Research, 2003, 42, 380-385.	3.7	51
213	Development of Pore-Filling Type Polymer Electrolyte Membrane Made by Plasma Graft Polymerization with PTFE Substrate Kagaku Kogaku Ronbunshu, 2003, 29, 159-164.	0.3	2
214	Preparation of Micron-Sized Monodispersed Thermoresponsive Coreâ^'Shell Microcapsules. Langmuir, 2002, 18, 1856-1864.	3.5	148
215	Development of a Molecular Recognition Ion Gating Membrane and Estimation of Its Pore Size Control. Journal of the American Chemical Society, 2002, 124, 7840-7846.	13.7	194
216	A Pore-Filling Electrolyte Membrane-Electrode Integrated System for a Direct Methanol Fuel Cell Application. Journal of the Electrochemical Society, 2002, 149, A1448.	2.9	63

#	Article	IF	CITATIONS
217	Plasma-graft Pore-filling Electrolyte Membranes Using a Porous Poly(tetrafluoroethylene) Substrate. Electrochemistry, 2002, 70, 950-952.	1.4	11
218	A Molecular-Recognition Microcapsule for Environmental Stimuli-Responsive Controlled Release. Advanced Materials, 2002, 14, 386.	21.0	224
219	ãf€ã,∰f¬ã,¯ãf^ãf¡ã,¿ãfŽãf¼ãf«ç‡fæ−™é›»æ±ç"¨é›»è§£è³³è†œã®ã,∙ã,¹ãf†ãfè¨è¨̂. Electrochemistry, 2002, 70, 6	5 44 4648.	1
220	Prediction of the Solubility of Chloroform in Acrylate Polymer Mixtures with Inclusion of the Hydrogen-bonding Effect. Journal of Physical Chemistry B, 2001, 105, 3143-3149.	2.6	10
221	Transport phenomena through intercrystalline and intracrystalline pathways of silicalite zeolite membranes. Journal of Membrane Science, 2001, 187, 203-212.	8.2	70
222	Cut-off of dilute O/W emulsions through a microfiltration membrane. Journal of Membrane Science, 2001, 190, 167-178.	8.2	11
223	Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates. Journal of Membrane Science, 2001, 192, 27-39.	8.2	182
224	Hollow-fiber-type pore-filling membranes made by plasma-graft polymerization for the removal of chlorinated organics from water. Journal of Membrane Science, 2001, 194, 217-228.	8.2	36
225	Prediction of solvent solubility, diffusivity and permeability in glassy polymeric membranes. Polymer, 2001, 42, 5225-5232.	3.8	16
226	Transport mechanism of deformable droplets in microfiltration of emulsions. Chemical Engineering Science, 2001, 56, 3539-3548.	3.8	53
227	Structural Characterization of Porous Glass Membrane by Pore Model Kagaku Kogaku Ronbunshu, 2000, 26, 675-682.	0.3	O
228	Morphology Control of Thermosensitive Membranes and Fundamental Investigation of Its Protein Purification Kagaku Kogaku Ronbunshu, 2000, 26, 849-854.	0.3	3
229	Application of a Zeolite A Membrane to Reverse Osmosis Process Journal of Chemical Engineering of Japan, 2000, 33, 333-336.	0.6	46
230	Effect of molecular association on solubility, diffusion, and permeability in polymeric membranes. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 171-181.	2.1	8
231	Solvent diffusion in amorphous glassy polymers. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 846-856.	2.1	46
232	A microscope FTIR mapping study on diffusion of hydrocarbons in single silicalite crystal particles. Microporous and Mesoporous Materials, 2000, 38, 207-220.	4.4	36
233	Design of a vapor permeation membrane for VOC removal by the filling membrane concept. Journal of Membrane Science, 2000, 164, 25-35.	8.2	22
234	Preparation of Organic/Inorganic Composite Membranes by Plasma-Graft Filling Polymerization Technique for Organic-Liquid Separation. Industrial & Engineering Chemistry Research, 2000, 39, 3284-3290.	3.7	24

#	Article	IF	CITATIONS
235	Reaction control of tetraethyl orthosilicate (TEOS)/O3 and tetramethyl orthosilicate (TMOS)/O3 counter diffusion chemical vapour deposition for preparation of molecular-sieve membranes. Physical Chemistry Chemical Physics, 2000, 2, 4465-4469.	2.8	35
236	A Novel Separation System Using Porous Thermosensitive Membranes. Industrial & Engineering Chemistry Research, 2000, 39, 2491-2495.	3.7	115
237	Estimation of Gas Permeability of a Zeolite Membrane, Based on a Molecular Simulation Technique and Permeation Model. Journal of Physical Chemistry B, 2000, 104, 1971-1976.	2.6	29
238	Preparation of Zeolite A and Faujasite Membranes from a Clear Solution. Industrial & Engineering Chemistry Research, 1999, 38, 4682-4688.	3.7	116
239	Development of a Fast Response Molecular Recognition Ion Gating Membrane. Journal of the American Chemical Society, 1999, 121, 4078-4079.	13.7	142
240	Transport Mechanism of Aromatic Vapor through Silver Salt Carrier/Polymer Blend Membrane and Its Humidity Effect. Journal of Physical Chemistry B, 1999, 103, 1831-1835.	2.6	25
241	Ethanol/water transport through silicalite membranes. Journal of Membrane Science, 1998, 144, 161-171.	8.2	121
242	Membrane Design for Pervaporation or Vapor Permeation Separation Using a Filling-Type Membrane Concept. Industrial & Engineering Chemistry Research, 1998, 37, 177-184.	3.7	35
243	Silicalite Membranes Modified by Counterdiffusion CVD Technique. Industrial & Engineering Chemistry Research, 1997, 36, 4217-4223.	3.7	129
244	Sol-gel synthesis of molecular sieving silica membranes. Journal of Membrane Science, 1997, 135, 237-243.	8.2	102
245	Swelling behavior of the filling-type membrane. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 469-477.	2.1	28
246	Chlorinated organics removal from water by plasma-graft filling polymerized membranes. AICHE Journal, 1996, 42, 892-895.	3.6	27
247	Evidence and mechanisms of filling polymerization by plasma-induced graft polymerization. , 1996, 34, 1203-1208.		64
248	Transport mechanism of carbon dioxide through perfluorosulfonate ionomer membranes containing an amine carrier. Chemical Engineering Science, 1996, 51, 4781-4789.	3.8	64
249	Olefin separation using silver impregnated ion-exchange membranes and silver salt/polymer blend membranes. Journal of Membrane Science, 1996, 117, 151-161.	8.2	51
250	Transport Properties of Carbon Dioxide through Amine Functionalized Carrier Membranes. Industrial & Lamp; Engineering Chemistry Research, 1995, 34, 4071-4077.	3.7	82
251	Preparation of pervaporation membranes for removal of dissolved organics from water by plasma-graft filling polymerization. Journal of Membrane Science, 1994, 95, 39-49.	8.2	75
252	Design of pervaporation membrane for organic-liquid separation based on solubility control by plasma-graft filling polymerization technique. Industrial & Engineering Chemistry Research, 1993, 32, 848-853.	3.7	50

#	Article	IF	CITATIONS
253	Solubility and pervaporation properties of the filling-polymerized membrane prepared by plasma-graft polymerization for pervaporation of organic-liquid mixtures. Industrial & Engineering Chemistry Research, 1992, 31, 1914-1919.	3.7	55
254	Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures. Macromolecules, 1991, 24, 5522-5527.	4.8	262
255	Optimum preparation conditions of amidoxime hollow fiber synthesized by radiation-induced grafting. Journal of Applied Polymer Science, 1990, 39, 2153-2163.	2.6	40
256	Crystal Structures of Ironâ€Based Oxides and Their Catalytic Efficiencies for the Oxygen Evolution Reaction: A Trend in Alkaline Media. ChemElectroChem, 0, , .	3.4	2