Ting Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1937236/publications.pdf

Version: 2024-02-01

257450 223800 2,408 47 24 46 citations h-index g-index papers 49 49 49 2658 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Harnessing lactic acid bacteria in synthetic microbial consortia. Trends in Biotechnology, 2022, 40, 8-11.	9.3	11
2	Engineering microbial consortia with rationally designed cellular interactions. Current Opinion in Biotechnology, 2022, 76, 102730.	6.6	22
3	Efficacy of nisin derivatives with improved biochemical characteristics, alone and in combination with endolysin PlyP100 to control Listeria monocytogenes in laboratory-scale Queso Fresco. Food Microbiology, 2021, 94, 103668.	4.2	12
4	Repulsive expansion dynamics in colony growth and gene expression. PLoS Computational Biology, 2021, 17, e1008168.	3.2	5
5	A comparative phenotypic and genomic analysis of Clostridium beijerinckii mutant with enhanced solvent production. Journal of Biotechnology, 2021, 329, 49-55.	3.8	9
6	Precise and reliable control of gene expression in <i>Agrobacterium tumefaciens</i> . Biotechnology and Bioengineering, 2021, 118, 3962-3972.	3.3	2
7	Composition and Metabolic Functions of the Microbiome in Fermented Grain during Light-Flavor Baijiu Fermentation. Microorganisms, 2020, 8, 1281.	3.6	52
8	Integrative Circuit-Host Modeling of a Genetic Switch in Varying Environments. Scientific Reports, 2020, 10, 8383.	3.3	23
9	Interaction variability shapes succession of synthetic microbial ecosystems. Nature Communications, 2020, 11, 309.	12.8	33
10	Synthetic, Context-Dependent Microbial Consortium of Predator and Prey. ACS Synthetic Biology, 2019, 8, 1713-1722.	3.8	13
11	Identification and characterization of core sludge and biofilm microbiota in anaerobic membrane bioreactors. Environment International, 2019, 133, 105165.	10.0	40
12	Nonequilibrium physics in biology. Reviews of Modern Physics, 2019, 91, .	45.6	123
13	Engineering the bacterium Comamonas testosteroni CNB-1: Plasmid curing and genetic manipulation. Biochemical Engineering Journal, 2018, 133, 74-82.	3.6	13
14	Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch. Biophysical Journal, 2018, 114, 737-746.	0.5	18
15	Development of an oxygen-independent flavin mononucleotide-based fluorescent reporter system in Clostridium beijerinckii and its potential applications. Journal of Biotechnology, 2018, 265, 119-126.	3.8	16
16	Spatial interference scale as a determinant of microbial range expansion. Science Advances, 2018, 4, eaau0695.	10.3	32
17	Designing microbial consortia with defined social interactions. Nature Chemical Biology, 2018, 14, 821-829.	8.0	250
18	Bacterial Consortium-Based Sensing System for Detecting Organophosphorus Pesticides. Analytical Chemistry, 2018, 90, 10577-10584.	6.5	39

#	Article	IF	CITATIONS
19	Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example. Methods in Molecular Biology, 2018, 1772, 297-325.	0.9	13
20	Developing a Synthetic Biology Toolkit for <i>Comamonas testosteroni</i> , an Emerging Cellular Chassis for Bioremediation. ACS Synthetic Biology, 2018, 7, 1753-1762.	3.8	30
21	Stochastic Turing patterns in a synthetic bacterial population. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6572-6577.	7.1	154
22	An integrative circuit–host modelling framework for predicting synthetic gene network behaviours. Nature Microbiology, 2017, 2, 1658-1666.	13.3	84
23	Genomic, Transcriptional, and Phenotypic Analysis of the Glucose Derepressed <i>Clostridium beijerinckii</i> Mutant Exhibiting Acid Crash Phenotype. Biotechnology Journal, 2017, 12, 1700182.	3.5	14
24	Characterization of a <i>Clostridium beijerinckii spoOA</i> mutant and its application for butyl butyrate production. Biotechnology and Bioengineering, 2017, 114, 106-112.	3.3	31
25	Engineering robust and tunable spatial structures with synthetic gene circuits. Nucleic Acids Research, 2017, 45, 1005-1014.	14.5	48
26	Gene transcription repression in <i>Clostridium beijerinckii</i> using CRISPRâ€dCas9. Biotechnology and Bioengineering, 2016, 113, 2739-2743.	3.3	46
27	System-level modeling of acetone–butanol–ethanol fermentation. FEMS Microbiology Letters, 2016, 363, fnw074.	1.8	10
28	Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean―Mutant Selection in ⟨i⟩Clostridium beijerinckii⟨/i⟩ as an Example. ACS Synthetic Biology, 2016, 5, 721-732.	3.8	143
29	An Ecological Understanding of Quorum Sensing-Controlled Bacteriocin Synthesis. Cellular and Molecular Bioengineering, 2016, 9, 443-454.	2.1	22
30	Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation. Biophysical Journal, 2016, 110, 258-268.	0.5	24
31	A gene network engineering platform for lactic acid bacteria. Nucleic Acids Research, 2016, 44, e37-e37.	14.5	24
32	Bacterial social interactions drive the emergence of differential spatial colony structures. BMC Systems Biology, 2015, 9, 59.	3.0	62
33	Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. Journal of Biotechnology, 2015, 200, 1-5.	3.8	153
34	Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by <i>Clostridium acetobutylicum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8505-8510.	7.1	61
35	Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metabolic Engineering, 2015, 29, 135-141.	7.0	109
36	Slow and Steady Wins the Race: A Bacterial Exploitative Competition Strategy in Fluctuating Environments. ACS Synthetic Biology, 2015, 4, 240-248.	3.8	19

#	Article	IF	CITATION
37	Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresources and Bioprocessing, 2014, 1 , .	4.2	22
38	Cloning and Optimization of a Nisin Biosynthesis Pathway for Bacteriocin Harvest. ACS Synthetic Biology, 2014, 3, 439-445.	3.8	41
39	Extinction, coexistence, and localized patterns of a bacterial population with contact-dependent inhibition. BMC Systems Biology, 2014, 8, 23.	3.0	17
40	Engineered genetic information processing circuits. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 273-287.	6.6	23
41	A Minimal Transcriptional Controlling Network of Regulatory T Cell Development. Journal of Physical Chemistry B, 2013, 117, 12995-13004.	2.6	15
42	Synthetic Biology Moving into the Clinic. Science, 2011, 333, 1248-1252.	12.6	348
43	Automatic Compilation from High-Level Biologically-Oriented Programming Language to Genetic Regulatory Networks. PLoS ONE, 2011, 6, e22490.	2.5	87
43		2.5	87
	Regulatory Networks. PLoS ONE, 2011, 6, e22490.		
44	Regulatory Networks. PLoS ONE, 2011, 6, e22490. A molecular noise generator. Physical Biology, 2008, 5, 036006. Phenotypic variability of growing cellular populations. Proceedings of the National Academy of	1.8	26