## Asuncion Rocher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1937110/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Maladaptive Pulmonary Vascular Responses to Chronic Sustained and Chronic Intermittent Hypoxia in<br>Rat. Antioxidants, 2022, 11, 54.                                                             | 5.1 | 5         |
| 2  | Oxygen Sensing: Physiology and Pathophysiology. Antioxidants, 2022, 11, 1018.                                                                                                                     | 5.1 | 1         |
| 3  | Physiology and Pathophysiology of Oxygen Sensitivity. Antioxidants, 2021, 10, 1114.                                                                                                               | 5.1 | 4         |
| 4  | Chronic Intermittent Hypoxia Induces Early-Stage Metabolic Dysfunction Independently of Adipose<br>Tissue Deregulation. Antioxidants, 2021, 10, 1233.                                             | 5.1 | 6         |
| 5  | Peripheral Dopamine 2-Receptor Antagonist Reverses Hypertension in a Chronic Intermittent Hypoxia<br>Rat Model. International Journal of Molecular Sciences, 2020, 21, 4893.                      | 4.1 | 4         |
| 6  | Hydroxycobalamin Reveals the Involvement of Hydrogen Sulfide in the Hypoxic Responses of Rat<br>Carotid Body Chemoreceptor Cells. Antioxidants, 2019, 8, 62.                                      | 5.1 | 4         |
| 7  | Hyperinsulinemia due to altered insulin secretion contributes to insulin resistance in chronic intermittent hypoxia independently of obesity. , 2019, , .                                         |     | 1         |
| 8  | Sex and age differences in pulmonary vascular responses in a chronic hypoxic rat model. , 2019, , .                                                                                               |     | 0         |
| 9  | Adrenal Medulla Chemo Sensitivity Does Not Compensate the Lack of Hypoxia Driven Carotid Body<br>Chemo Reflex in Guinea Pigs. Advances in Experimental Medicine and Biology, 2018, 1071, 167-174. | 1.6 | Ο         |
| 10 | Mitochondrial Complex I Dysfunction and Peripheral Chemoreflex Sensitivity in a FASTK-Deficient Mice<br>Model. Advances in Experimental Medicine and Biology, 2018, 1071, 51-59.                  | 1.6 | 5         |
| 11 | Guinea Pig as a Model to Study the Carotid Body Mediated Chronic Intermittent Hypoxia Effects.<br>Frontiers in Physiology, 2018, 9, 694.                                                          | 2.8 | 11        |
| 12 | Pulmonary Hypertension in Female Rats: Estrogens and Age Influence. , 2018, , .                                                                                                                   |     | 0         |
| 13 | Maladaptive Pulmonary vascular responses to chronic intermittent and sustained hypoxia in a rat hypertension model. , 2018, , .                                                                   |     | Ο         |
| 14 | Chronic Intermittent Hypoxia effects are not mediated by guinea pig carotid body sensitization. , 2018, ,                                                                                         |     | 0         |
| 15 | Guinea Pig Oxygen-Sensing and Carotid Body Functional Properties. Frontiers in Physiology, 2017, 8, 285.                                                                                          | 2.8 | 13        |
| 16 | Vascular sexual dimorphism and pulmonary hypertension in a rat chronic hypoxia model. , 2017, , .                                                                                                 |     | 0         |
| 17 | Aged mice obstructive sleep apnoea model with spontaneous tumorigenesis: physiological parameters. , 2017, , .                                                                                    |     | 0         |
| 18 | The Calcium-Sensing Receptor in Health and Disease. International Review of Cell and Molecular Biology, 2016, 327, 321-369.                                                                       | 3.2 | 56        |

ASUNCION ROCHER

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hypoxic pulmonary vasoconstriction, carotid body function and erythropoietin production in adult rats perinatally exposed to hyperoxia. Journal of Physiology, 2015, 593, 2459-2477.                                       | 2.9 | 7         |
| 20 | Experimental Observations on the Biological Significance of Hydrogen Sulfide in Carotid Body Chemoreception. Advances in Experimental Medicine and Biology, 2015, 860, 9-16.                                               | 1.6 | 2         |
| 21 | Fernando de Castro and the discovery of the arterial chemoreceptors. Frontiers in Neuroanatomy, 2014, 8, 25.                                                                                                               | 1.7 | 16        |
| 22 | Intermittent hypoxia and diet-induced obesity: effects on oxidative status, sympathetic tone, plasma<br>glucose and insulin levels, and arterial pressure. Journal of Applied Physiology, 2014, 117, 706-719.              | 2.5 | 72        |
| 23 | Intracellular Ca2+ remodeling during the phenotypic journey of human coronary smooth muscle cells. Cell Calcium, 2013, 54, 375-385.                                                                                        | 2.4 | 17        |
| 24 | Cyclic AMP and Epac Contribute to the Genesis of the Positive Interaction Between Hypoxia and<br>Hypercapnia in the Carotid Body. Advances in Experimental Medicine and Biology, 2012, 758, 215-223.                       | 1.6 | 2         |
| 25 | Serotonin Dynamics and Actions in the Rat Carotid Body: Preliminary Findings. Advances in Experimental Medicine and Biology, 2012, 758, 255-263.                                                                           | 1.6 | 5         |
| 26 | Some Reflections on Intermittent Hypoxia. Does it Constitute the Translational Niche for Carotid<br>Body Chemoreceptor Researchers?. Advances in Experimental Medicine and Biology, 2012, 758, 333-342.                    | 1.6 | 6         |
| 27 | Tetrodotoxin as a Tool to Elucidate Sensory Transduction Mechanisms: The Case for the Arterial Chemoreceptors of the Carotid Body. Marine Drugs, 2011, 9, 2683-2704.                                                       | 4.6 | 3         |
| 28 | Spermine attenuates carotid body glomus cell oxygen sensing by inhibiting L-type Ca2+ channels.<br>Respiratory Physiology and Neurobiology, 2011, 175, 80-89.                                                              | 1.6 | 6         |
| 29 | A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology. Respiratory Physiology and Neurobiology, 2010, 174, 317-330.                                | 1.6 | 31        |
| 30 | EPAC signalling pathways are involved in low <i>P</i> <sub>O2</sub> chemoreception in carotid body chemoreceptor cells. Journal of Physiology, 2009, 587, 4015-4027.                                                       | 2.9 | 24        |
| 31 | Effects of the Polyamine Spermine on Arterial Chemoreception. Advances in Experimental Medicine and<br>Biology, 2009, 648, 97-104.                                                                                         | 1.6 | 2         |
| 32 | RT-PCR and Pharmacological Analysis of L-and T-Type Calcium Channels in Rat Carotid Body. Advances<br>in Experimental Medicine and Biology, 2009, 648, 105-112.                                                            | 1.6 | 12        |
| 33 | Chemoreception in the context of the general biology of ROS. Respiratory Physiology and Neurobiology, 2007, 157, 30-44.                                                                                                    | 1.6 | 50        |
| 34 | Molecular identification and functional role of voltage-gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo. Journal of Neurochemistry, 2007, 102, 231-245. | 3.9 | 27        |
| 35 | Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors. Journal of Neurochemistry, 2006, 98, 616-628.                                                                       | 3.9 | 62        |
| 36 | An Overview on the Homeostasis of Ca2+ in Chemoreceptor Cells of the Rabbit and Rat Carotid Bodies.                                                                                                                        |     | 7         |

, 2006, 580, 215-222.

ASUNCION ROCHER

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Role of voltage-dependent calcium channels in stimulus-secretion coupling in rabbit carotid body chemoreceptor cells. Journal of Physiology, 2005, 562, 407-420.                                                                           | 2.9 | 31        |
| 38 | Ventilatory responses and carotid body function in adult rats perinatally exposed to hyperoxia.<br>Journal of Physiology, 2004, 554, 126-144.                                                                                              | 2.9 | 32        |
| 39 | A Reevaluation of the Mechanisms Involved in the Secretion of Catecholamine Evoked by 2, 4-Dinitro<br>Phenol from Chemoreceptor Cells of the Rabbit Carotid Body. Advances in Experimental Medicine and<br>Biology, 2003, 536, 85-93.      | 1.6 | 1         |
| 40 | Effects of Perinatal Hyperoxia on Carotid Body Chemoreceptor Activity in Vitro. Advances in Experimental Medicine and Biology, 2003, 536, 517-524.                                                                                         | 1.6 | 2         |
| 41 | Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia.<br>Respiratory Physiology and Neurobiology, 2002, 132, 17-41.                                                                             | 1.6 | 109       |
| 42 | Adenosine inhibits L-type Ca2+current and catecholamine release in the rabbit carotid body chemoreceptor cells. European Journal of Neuroscience, 1999, 11, 673-681.                                                                       | 2.6 | 27        |
| 43 | Hypoxia inhibits the synthesis of phosphoinositides in the rabbit carotid body. Pflugers Archiv<br>European Journal of Physiology, 1999, 437, 839-845.                                                                                     | 2.8 | 10        |
| 44 | ldentification of major rye secalins as coeliac immunoreactive proteins. BBA - Proteins and Proteomics, 1996, 1295, 13-22.                                                                                                                 | 2.1 | 37        |
| 45 | Primary Structure of omega-Hordothionin, a Member of a Novel Family of Thionins from Barley<br>Endosperm, and Its Inhibition of Protein Synthesis in Eukaryotic and Prokaryotic Cell-Free Systems.<br>FEBS Journal, 1996, 239, 67-73.      | 0.2 | 54        |
| 46 | Cholera and Pertussis Toxins Reveal Multiple Regulation of cAMP Levels in the Rabbit Carotid Body.<br>European Journal of Neuroscience, 1996, 8, 2320-2327.                                                                                | 2.6 | 14        |
| 47 | Intracellular Ca2+ Deposits and Catecholamine Secretion by Chemoreceptor Cells of the Rabbit<br>Carotid Body. Advances in Experimental Medicine and Biology, 1996, 410, 279-284.                                                           | 1.6 | 1         |
| 48 | 1H-nmr studies on the structure of a new thionin from barley endosperm. Biopolymers, 1995, 36, 751-763.                                                                                                                                    | 2.4 | 34        |
| 49 | Characterization of distinct α- and γ-type gliadins and low molecular weight components from wheat<br>endosperm as coeliac immunoreactive proteins. BBA - Proteins and Proteomics, 1995, 1247, 143-148.                                    | 2.1 | 20        |
| 50 | Cellular mechanisms of oxygen chemoreception in the carotid body. Respiration Physiology, 1995, 102, 137-147.                                                                                                                              | 2.7 | 45        |
| 51 | Activation of GTP-Binding Proteins by Aluminum Fluoride Modulates Catecholamine Release in the Rabbit Carotid Body. Advances in Experimental Medicine and Biology, 1994, 360, 205-208.                                                     | 1.6 | Ο         |
| 52 | Assessment of Na+ Channel Involvement in the Release of Catecholamines from Chemoreceptor Cells of the Carotid Body. Advances in Experimental Medicine and Biology, 1994, 360, 201-204.                                                    | 1.6 | 1         |
| 53 | Distribution and properties of major ribosome-inactivating proteins (28 S rRNA N-glycosidases) of the<br>plant Saponaria officinalis L. (Caryophyllaceae). Biochimica Et Biophysica Acta Gene Regulatory<br>Mechanisms, 1993, 1216, 31-42. | 2.4 | 102       |
| 54 | The role of dihydropyridine-sensitive Ca2+ channels in stimulus-evoked catecholamine release from chemoreceptor cells of the carotid body. Neuroscience, 1992, 47, 463-472.                                                                | 2.3 | 86        |

ASUNCION ROCHER

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of the three major coeliac immunoreactive proteins and one α-amylase inhibitor from oat endosperm. FEBS Letters, 1992, 310, 37-40.                                               | 2.8 | 15        |
| 56 | Isolation and partial characterization of a new ribosome-inactivating protein from Petrocoptis<br>glaucifolia (Lag.) Boiss. Planta, 1992, 186, 532-40.                                          | 3.2 | 30        |
| 57 | lonic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells Journal of Physiology, 1991, 433, 533-548.                                                          | 2.9 | 66        |
| 58 | Î <sup>3</sup> -Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat<br>endosperm. FEBS Letters, 1990, 270, 191-194.                                    | 2.8 | 193       |
| 59 | Activation of the release of dopamine in the carotid body by veratridine. Evidence for the presence of voltage-dependent Na+ channels in type I cells. Neuroscience Letters, 1988, 94, 274-278. | 2.1 | 16        |
| 60 | Use of perphenazine as a ligand for calmodium affinity chromatography. Journal of Chromatography<br>A, 1986, 368, 462-467.                                                                      | 3.7 | 1         |