Willis X Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1936504/publications.pdf

Version: 2024-02-01

59	2,813	25	51
papers	citations	h-index	g-index
65	65	65	3606
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inpatient use of metformin and acarbose is associated with reduced mortality of COVIDâ€19 patients with type 2 diabetes mellitus. Endocrinology, Diabetes and Metabolism, 2022, 5, e00301.	1.0	15
2	<i>Drosophila</i> <scp>SERTAD</scp> domain protein <scp>Taranis</scp> is required in somatic cells for maintenance of male germline stem cells. Developmental Dynamics, 2021, 250, 237-248.	0.8	3
3	Worldwide inverse correlation between Bacille Calmette–Guérin (BCG) immunization and COVID-19 mortality. Infection, 2021, 49, 463-473.	2.3	21
4	Next-Generation Sequencing and Proteomics of Cerebrospinal Fluid From COVID-19 Patients With Neurological Manifestations. Frontiers in Immunology, 2021, 12, 782731.	2.2	11
5	Aging mechanismsâ€"A perspective mostly from <i>Drosophila</i> . Genetics & Genomics Next, 2020, 1, e10026.	0.8	11
6	Endogenous IL-33 and Its Autoamplification of IL-33/ST2 Pathway Play an Important Role in Asthma. Journal of Immunology, 2020, 204, 1592-1597.	0.4	20
7	A Screening Method for Identification of Heterochromatin-Promoting Drugs Using Drosophila . Journal of Visualized Experiments, 2020, , .	0.2	0
8	Unphosphorylated STAT3 in heterochromatin formation and tumor suppression in lung cancer. BMC Cancer, 2020, 20, 145.	1.1	30
9	Streptonigrin at low concentration promotes heterochromatin formation. Scientific Reports, 2020, 10, 3478.	1.6	6
10	Metformin Use in Diabetes Prior to Hospitalization: Effects on Mortality in Covid-19. Endocrine Practice, 2020, 26, 1166-1172.	1.1	31
11	Identification of methotrexate as a heterochromatin-promoting drug. Scientific Reports, 2019, 9, 11673.	1.6	13
12	Genome-wide Kdm4 histone demethylase transcriptional regulation in Drosophila. Molecular Genetics and Genomics, 2019, 294, 1107-1121.	1.0	7
13	Tumour cellâ€intrinsic <scp>CTLA</scp> 4 regulates <scp>PD</scp> â€L1 expression in nonâ€small cell lung cancer. Journal of Cellular and Molecular Medicine, 2019, 23, 535-542.	1.6	68
14	STAT., 2018,, 5170-5175.		0
15	Particulate matterâ€induced epigenetic changes and lung cancer. Clinical Respiratory Journal, 2017, 11, 539-546.	0.6	85
16	Canonical and non-canonical JAK/STAT transcriptional targets may be involved in distinct and overlapping cellular processes. BMC Genomics, 2017, 18, 718.	1.2	11
17	The SERTAD protein Taranis plays a role in Polycomb-mediated gene repression. PLoS ONE, 2017, 12, e0180026.	1.1	4
18	STAT., 2016,, 1-5.		0

#	Article	IF	Citations
19	Heterochromatin components in germline stem cell maintenance. Scientific Reports, 2015, 5, 17463.	1.6	16
20	Requirement for CRIF1 in RNA interference and Dicer-2 stability. RNA Biology, 2014, 11, 1171-1179.	1.5	6
21	Role of STAT3 in lung cancer. Jak-stat, 2014, 3, e999503.	2.2	61
22	JAK-STAT in heterochromatin and genome stability. Jak-stat, 2013, 2, e26090.	2.2	19
23	The Birt-Hogg-Dube tumor suppressor Folliculin negatively regulates ribosomal RNA synthesis. Human Molecular Genetics, 2013, 22, 284-299.	1.4	14
24	Unphosphorylated STAT5A stabilizes heterochromatin and suppresses tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10213-10218.	3.3	70
25	Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling. Scientific Reports, 2013, 3, 2894.	1.6	36
26	Heterochromatin Formation Promotes Longevity and Represses Ribosomal RNA Synthesis. PLoS Genetics, 2012, 8, e1002473.	1.5	229
27	A Positive Feedback Signaling Loop between ATM and the Vitamin D Receptor Is Critical for Cancer Chemoprevention by Vitamin D. Cancer Research, 2012, 72, 958-968.	0.4	51
28	Global heterochromatin loss. Epigenetics, 2012, 7, 680-688.	1.3	177
29	JAK/STAT and Chromatin Regulation in Drosophila. , 2012, , 115-131.		1
30	Phospho- and Unphospho-STATs in Signal Transduction and Gene Regulation (STAT)., 2012,, 1377-1380.		1
31	Unphosphorylated STAT and heterochromatin protect genome stability. FASEB Journal, 2011, 25, 232-241.	0.2	57
32	STAT Is an Essential Activator of the Zygotic Genome in the Early Drosophila Embryo. PLoS Genetics, 2011, 7, e1002086.	1.5	50
33	The Role of Receptor Tyrosine Kinases in Primordial Germ Cell Migration. Methods in Molecular Biology, 2011, 750, 291-306.	0.4	2
34	Using Drosophila Larval Imaginal Discs to Study Low-Dose Radiation-Induced Cell Cycle Arrest. Methods in Molecular Biology, 2011, 782, 93-103.	0.4	2
35	Bistability coordinates activation of the EGFR and DPP pathways in <i>Drosophila</i> vein differentiation. Molecular Systems Biology, 2009, 5, 278.	3.2	23
36	Canonical and non-canonical JAK–STAT signaling. Trends in Cell Biology, 2008, 18, 545-551.	3.6	260

#	Article	IF	Citations
37	Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nature Cell Biology, 2008, 10, 489-496.	4.6	122
38	Raf Activation Is Regulated by Tyrosine 510 Phosphorylation in Drosophila. PLoS Biology, 2008, 6, e128.	2.6	18
39	Evidence for Transgenerational Transmission of Epigenetic Tumor Susceptibility in Drosophila. PLoS Genetics, 2007, 3, e151.	1.5	65
40	An Intrinsic Cell Cycle Checkpoint Pathway Mediated by MEK and ERK in Drosophila. Developmental Cell, 2006, 11, 575-582.	3.1	21
41	A novel function of Drosophila eIF4A as a negative regulator of Dpp/BMP signalling that mediates SMAD degradation. Nature Cell Biology, 2006, 8, 1407-1414.	4.6	29
42	JAK signaling globally counteracts heterochromatic gene silencing. Nature Genetics, 2006, 38, 1071-1076.	9.4	165
43	Functions and mechanisms of receptor tyrosine kinase Torso signaling: Lessons fromDrosophila embryonic terminal development. Developmental Dynamics, 2005, 232, 656-672.	0.8	51
44	A Genetic Screen for Maternal-Effect Suppressors of decapentaplegic Identifies the eukaryotic translation initiation factor 4A in Drosophila. Genetics, 2005, 171, 1629-1641.	1.2	9
45	Evidence for transgenerational transmission of epigenetic tumor susceptibility in Drosophila. PLoS Genetics, 2005, preprint, e151.	1.5	0
46	Multiple signaling pathways and a selector protein sequentially regulate Drosophila wing development. Development (Cambridge), 2004, 131, 285-298.	1.2	38
47	Receptor Tyrosine Kinase Signaling and Primordial Germ Cell Development. Cell Cycle, 2004, 3, 247-249.	1.3	8
48	Receptor tyrosine kinase signaling and primordial germ cell development. Cell Cycle, 2004, 3, 249-51.	1.3	2
49	Patterns and functions of STAT activation during Drosophila embryogenesis. Mechanisms of Development, 2003, 120, 1455-1468.	1.7	41
50	Coactivation of STAT and Ras Is Required for Germ Cell Proliferation and Invasive Migration in Drosophila. Developmental Cell, 2003, 5, 787-798.	3.1	82
51	Drosophila Gain-of-Function Mutant RTK Torso Triggers Ectopic Dpp and STAT Signaling. Genetics, 2003, 164, 247-258.	1.2	11
52	Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in <i>Drosophila</i> . Development (Cambridge), 2002, 129, 4241-4248.	1.2	18
53	Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in Drosophila. Development (Cambridge), 2002, 129, 4241-8.	1.2	19
54	A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Current Biology, 2000, 10, 964-973.	1.8	87

WILLIS X LI

#	Article	IF	CITATIONS
55	Identification of Autosomal Regions Involved in Drosophila Raf Function. Genetics, 2000, 156, 763-774.	1.2	15
56	The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature, 1997, 385, 552-555.	13.7	184
57	Specificity of Receptor Tyrosine Kinase Signaling Pathways: Lessons from Drosophila. , 1997, 19, 167-182.		6
58	Effects of a conditional Drosophila PKA mutant on olfactory learning and memory Learning and Memory, 1996, 2, 320-333.	0.5	69
59	Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell, 1995, 80, 553-562.	13.5	325