
Thierry Fouchet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1936058/publications.pdf Version: 2024-02-01

THIEDDY FOUCHET

#	Article	IF	CITATIONS
1	Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science, 2006, 312, 400-404.	12.6	1,395
2	Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science, 2005, 307, 1576-1581.	12.6	842
3	Phyllosilicates on Mars and implications for early martian climate. Nature, 2005, 438, 623-627.	27.8	825
4	The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra. Icarus, 2007, 189, 35-62.	2.5	367
5	Titan's Atmospheric Temperatures, Winds, and Composition. Science, 2005, 308, 975-978.	12.6	318
6	Exploring The Saturn System In The Thermal Infrared: The Composite Infrared Spectrometer. Space Science Reviews, 2004, 115, 169-297.	8.1	275
7	The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astronomy and Astrophysics, 2001, 370, 610-622.	5.1	204
8	Temperatures, Winds, and Composition in the Saturnian System. Science, 2005, 307, 1247-1251.	12.6	184
9	Vertical abundance profiles of hydrocarbons in Titan's atmosphere at 15° S and 80° N retrieved from Cassini/CIRS spectra. Icarus, 2007, 188, 120-138.	2.5	176
10	Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	167
11	The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Science Reviews, 2021, 217, 4.	8.1	160
12	Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planetary and Space Science, 2007, 55, 1653-1672.	1.7	155
13	The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Science Reviews, 2021, 217, 1.	8.1	131
14	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	119
15	ISO-SWS Observations of Jupiter: Measurement of the Ammonia Tropospheric Profile and of the 15N/14N Isotopic Ratio. Icarus, 2000, 143, 223-243.	2.5	111
16	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	27.8	111
17	South-polar features on Venus similar to those near the north pole. Nature, 2007, 450, 637-640.	27.8	110
18	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107

#	Article	IF	CITATIONS
19	An intense stratospheric jet on Jupiter. Nature, 2004, 427, 132-135.	27.8	103
20	Martian water vapor: Mars Express PFS/LW observations. Icarus, 2007, 190, 32-49.	2.5	101
21	Modeling the annual cycle of HDO in the Martian atmosphere. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	100
22	A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature, 2007, 450, 641-645.	27.8	95
23	Detection of CO and HCN in Plutoâ \in ™s atmosphere with ALMA. Icarus, 2017, 286, 289-307.	2.5	89
24	An equatorial oscillation in Saturn's middle atmosphere. Nature, 2008, 453, 200-202.	27.8	88
25	Hyperspectral imaging of convective CO ₂ ice clouds in the equatorial mesosphere of Mars. Journal of Geophysical Research, 2007, 112, .	3.3	81
26	Vertical and meridional distribution of ethane, acetylene and propane in Saturn's stratosphere from CIRS/Cassini limb observations. Icarus, 2009, 203, 214-232.	2.5	78
27	Meridional variations of C2H2 and C2H6 in Jupiter's atmosphere from Cassini CIRS infrared spectra. Icarus, 2007, 188, 47-71.	2.5	72
28	Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, 2018, 155, 12-40.	1.7	69
29	Retrievals of jovian tropospheric phosphine from Cassini/CIRS. Icarus, 2004, 172, 37-49.	2.5	68
30	Line Positions and Intensities in the 2ν2/ν4 Vibrational System of 14NH3 near 5–7 μm. Journal of Molecula Spectroscopy, 2000, 203, 285-309.	ar 1.2	66
31	Search for spatial variation in the jovian 15N/14N ratio from Cassini/CIRS observations. Icarus, 2004, 172, 50-58.	2.5	64
32	Jupiter's Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment. Science, 2004, 305, 1582-1586.	12.6	63
33	Mapping potential-vorticity dynamics on Jupiter. I: Zonal-mean circulation from Cassini and Voyager 1 data. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1577-1603.	2.7	63
34	Seasonal variations of the martian COÂover Hellas as observed byÂOMEGA/Mars Express. Astronomy and Astrophysics, 2006, 459, 265-270.	5.1	62
35	Seasonal variations of hydrogen peroxide and water vapor on Mars: Further indications of heterogeneous chemistry. Astronomy and Astrophysics, 2015, 578, A127.	5.1	53
36	Titan's 5-μm window: observations with the Very Large Telescope. Icarus, 2003, 162, 125-142.	2.5	51

#	Article	IF	CITATIONS
37	The atmospheric composition and structure of Jupiter and Saturn from ISO observations: a preliminary review. Planetary and Space Science, 1999, 47, 1225-1242.	1.7	50
38	Water vapor mapping on Mars using OMEGA/Mars Express. Planetary and Space Science, 2007, 55, 333-342.	1.7	50
39	A stringent upper limit to SO ₂ in the Martian atmosphere. Astronomy and Astrophysics, 2011, 530, A37.	5.1	49
40	Scientific rationale for Saturn× ³ s in situ exploration. Planetary and Space Science, 2014, 104, 29-47.	1.7	49
41	A stringent upper limit of the PH ₃ abundance at the cloud top of Venus. Astronomy and Astrophysics, 2020, 643, L5.	5.1	49
42	Investigation of water vapor on Mars with PFS/SW of Mars Express. Icarus, 2008, 195, 557-575.	2.5	48
43	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	10.3	47
44	The hydrogen ortho-to-para ratio in the stratospheres of the giant planets. Icarus, 2003, 161, 127-143.	2.5	45
45	Spectro-imaging observations of Jupiter's 2-μm auroral emission. I.ÂH3+Âdistribution and temperature. Icarus, 2004, 171, 133-152.	2.5	45
46	Observations of CO in the atmosphere of Mars with PFS onboard Mars Express. Planetary and Space Science, 2009, 57, 1446-1457.	1.7	45
47	Global climate modeling of Saturn's atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 2014, 238, 110-124.	2.5	45
48	Submillimeter mapping of mesospheric minor species on Venus with ALMA. Planetary and Space Science, 2015, 113-114, 275-291.	1.7	45
49	Vapor Pressure Isotope Fractionation Effects in Planetary Atmospheres: Application to Deuterium. Icarus, 2000, 144, 114-123.	2.5	44
50	A far wing lineshape for H2 broadened CH4 infrared transitions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72, 117-122.	2.3	42
51	Model, software and database for line-mixing effects in the ν3 and ν4 bands of CH4 and tests using laboratory and planetary measurements—ll: H2 (and He) broadening and the atmospheres of Jupiter and Saturn. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101, 306-324.	2.3	42
52	Simultaneous mapping of H2O and H2O2 on Mars from infrared high-resolution imaging spectroscopy. Icarus, 2008, 195, 547-556.	2.5	42
53	A study of the properties of a local dust storm with Mars Express OMEGA and PFS data. Icarus, 2009, 201, 504-516.	2.5	42
54	Evolution of the equatorial oscillation in Saturn's stratosphere between 2005 and 2010 from Cassini/CIRS limb data analysis. Geophysical Research Letters, 2011, 38, .	4.0	41

#	Article	IF	CITATIONS
55	Latitudinal variation of Saturn photochemistry deduced from spatially-resolved ultraviolet spectra. Icarus, 2006, 180, 379-392.	2.5	40
56	HDO and SO ₂ thermal mapping on Venus: evidence for strong SO ₂ Âvariability. Astronomy and Astrophysics, 2012, 543, A153.	5.1	40
57	Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106347.	2.9	40
58	A map of D/H on Mars in the thermal infrared using EXES aboard SOFIA. Astronomy and Astrophysics, 2016, 586, A62.	5.1	39
59	Disruption of Saturn's quasi-periodic equatorial oscillation by the great northern storm. Nature Astronomy, 2017, 1, 765-770.	10.1	37
60	A cometary origin for CO in the stratosphere of Saturn?. Astronomy and Astrophysics, 2010, 510, A88.	5.1	37
61	Meridional distribution of CH3C2H and C4H2 in Saturn's stratosphere from CIRS/Cassini limb and nadir observations. Icarus, 2010, 209, 682-695.	2.5	35
62	First observation of CO at 345GHz in the atmosphere of Saturn with the JCMT: New constraints on its origin. Icarus, 2009, 203, 531-540.	2.5	33
63	Global climate modeling of Saturn's atmosphere. Part II: Multi-annual high-resolution dynamical simulations. Icarus, 2020, 335, 113377.	2.5	31
64	In situ recording of Mars soundscape. Nature, 2022, 605, 653-658.	27.8	30
65	HDO and SO ₂ thermal mapping on Venus. Astronomy and Astrophysics, 2013, 559, A65.	5.1	26
66	New measurements of D/H on Mars using EXES aboard SOFIA. Astronomy and Astrophysics, 2018, 612, A112.	5.1	26
67	HDO and SO ₂ thermal mapping on Venus. Astronomy and Astrophysics, 2019, 623, A70.	5.1	26
68	A mapping of martian water sublimation during early northern summer using OMEGA/Mars Express. Astronomy and Astrophysics, 2005, 441, L9-L12.	5.1	26
69	HDO and SO ₂ thermal mapping on Venus. Astronomy and Astrophysics, 2016, 595, A74.	5.1	24
70	Saturn: Composition and Chemistry. , 2009, , 83-112.		23
71	Seasonal changes in Saturn's stratosphere inferred from Cassini/CIRS limb observations. Icarus, 2015, 258, 224-238.	2.5	22

Radiative Process: Techniques and Applications. , 2017, , 106-171.

21

#	Article	IF	CITATIONS
73	SuperCam calibration targets on board the perseverance rover: Fabrication and quantitative characterization. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106341.	2.9	20
74	Equatorial Oscillation and Planetary Wave Activity in Saturn's Stratosphere Through the Cassini Epoch. Journal of Geophysical Research E: Planets, 2018, 123, 246-261.	3.6	19
75	Stratospheric benzene and hydrocarbon aerosols detected in Saturn's auroral regions. Astronomy and Astrophysics, 2015, 580, A89.	5.1	19
76	HDO and SO ₂ thermal mapping on Venus. Astronomy and Astrophysics, 2020, 639, A69.	5.1	19
77	The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission. Icarus, 2022, 373, 114773.	2.5	19
78	Detection of S (IV) 10.51 μm emission from the Io plasma torus. Journal of Geophysical Research, 2001, 106, 29899-29910.	3.3	18
79	Observations of CO on Saturn and Uranus at millimeter wavelengths: new upper limit determinations. Astronomy and Astrophysics, 2008, 484, 555-561.	5.1	17
80	OMEGA/Mars Express: South Pole Region, water vapor daily variability. Icarus, 2009, 201, 102-112.	2.5	17
81	First direct measurement of auroral and equatorial jets in the stratosphere of Jupiter. Astronomy and Astrophysics, 2021, 647, L8.	5.1	16
82	New upper limits for hydrogen halides on Saturn derived from Cassini-CIRS data. Icarus, 2006, 185, 466-475.	2.5	15
83	<i>Herschel</i> map of Saturn's stratospheric water, delivered by the plumes of Enceladus. Astronomy and Astrophysics, 2019, 630, A87.	5.1	15
84	Upper limits on hydrogen halides in Jupiter from Cassini/CIRS observations. Icarus, 2004, 170, 237-241.	2.5	13
85	The Planets and Titan Observed by ISO. Space Science Reviews, 2005, 119, 123-139.	8.1	13
86	Stratospheric aftermath of the 2010 Storm on Saturn as observed by the TEXES instrument. I. Temperature structure. Icarus, 2016, 277, 196-214.	2.5	12
87	Radiative-equilibrium model of Jupiter's atmosphere and application to estimating stratospheric circulations. Icarus, 2020, 351, 113935.	2.5	11
88	Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission. Experimental Astronomy, 2009, 23, 947-976.	3.7	10
89	Water vapor map of Mars near summer solstice using ground-based infrared spectroscopy. Astronomy and Astrophysics, 2010, 520, A33.	5.1	10
90	Stringent upper limit of CH ₄ on Mars based on SOFIA/EXES observations. Astronomy and Astrophysics, 2018, 610, A78.	5.1	10

#	Article	IF	CITATIONS
91	Pre-launch radiometric calibration of the infrared spectrometer onboard SuperCam for the Mars2020 rover. Review of Scientific Instruments, 2020, 91, 063105.	1.3	10
92	Spatial Variations in the Altitude of the CH ₄ Homopause at Jupiter's Mid-to-high Latitudes, as Constrained from IRTF-TEXES Spectra. Planetary Science Journal, 2020, 1, 85.	3.6	9
93	Pluto's atmosphere observations with ALMA: Spatially-resolved maps of CO and HCN emission and first detection of HNC. Icarus, 2022, 372, 114722.	2.5	9
94	Thermal Structure and Aerosols in Mars' Atmosphere From TIRVIM/ACS Onboard the ExoMars Trace Gas Orbiter: Validation of the Retrieval Algorithm. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	9
95	A simulation of the OMEGA/Mars Express observations: Analysis of the atmospheric contribution. Planetary and Space Science, 2006, 54, 774-783.	1.7	8
96	A study of the Martian water vapor over Hellas using OMEGA and PFS aboard Mars Express. Astronomy and Astrophysics, 2008, 484, 547-553.	5.1	8
97	Mapping of Jupiter's tropospheric NH 3 abundance using ground-based IRTF/TEXES observations at 5â€ ⁻ µm. Icarus, 2018, 314, 106-120.	2.5	8
98	Ground-based infrared mapping of H ₂ O ₂ on Mars near opposition. Astronomy and Astrophysics, 2019, 627, A60.	5.1	8
99	Mars environment and magnetic orbiter model payload. Experimental Astronomy, 2009, 23, 761-783.	3.7	7
100	Interferometric millimeter observations of water vapor on Mars and comparison with Mars Express measurements. Planetary and Space Science, 2011, 59, 683-690.	1.7	7
101	Mapping the thermal structure and minor species of Venus mesosphere with ALMA submillimeter observations. Astronomy and Astrophysics, 0, , .	5.1	6
102	Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer. , 2004, , 169-297.		5
103	Unique Spectroscopy and Imaging of Mars with the <i>James Webb Space Telescope</i> . Publications of the Pacific, 2016, 128, 018004.	3.1	5
104	In Situ exploration of the giant planets. Experimental Astronomy, 2022, 54, 975-1013.	3.7	5
105	Monitoring of the evolution of H ₂ 0 vapor in the stratosphere of Jupiter over an 18-yr period with the <i>0din</i> space telescope. Astronomy and Astrophysics, 2020, 641, A140.	5.1	5
106	The SuperCam infrared instrument on the NASA MARS2020 mission: performance and qualification results. , 2019, , .		5
107	Mars Environment and Magnetic Orbiter Scientific and Measurement Objectives. Astrobiology, 2009, 9, 71-89.	3.0	4
108	Analysis of high altitude clouds in the martian atmosphere based on Mars Climate Sounder observations. Journal of Physics: Conference Series, 2016, 771, 012049.	0.4	3

#	Article	IF	CITATIONS
109	The supercam infrared instrument on the NASA Mars2020 mission: optical design and performance. , 2017, , .		3
110	The Planets and Titan Observed by ISO. , 2005, , 123-139.		3
111	The CH4 abundance in Jupiter's upper atmosphere. Astronomy and Astrophysics, 0, , .	5.1	2
112	New Results on the Composition of the Outer Planets and Titan. Highlights of Astronomy, 2005, 13, 891-893.	0.0	0
113	La météorologie de Jupiter. La Météorologie, 2006, 8, 19.	0.5	0