Shibin Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1935916/publications.pdf

Version: 2024-02-01

		361413	395702
35	1,253	20	33
papers	citations	h-index	g-index
35	35	35	1575
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Freezing–Corrosion Treatment on Wear Resistance of Laser-Cladded Cobalt-Based Coatings on EH32 Steel. Tribology Transactions, 2022, 65, 122-136.	2.0	1
2	Alumina nanoparticles-reinforced graphene-containing waterborne polyurethane coating for enhancing corrosion and wear resistance. Corrosion Communications, 2022, , .	6.0	5
3	Layered tungsten-based composites and their pseudocapacitive and electrocatalytic performance. Materials Chemistry Frontiers, 2022, 6, 737-747.	5.9	7
4	Superhydrophobic micro-nano structured PTFE/WO3 coating on low-temperature steel with outstanding anti-pollution, anti-icing, and anti-fouling performance. Surface and Coatings Technology, 2022, 434, 128214.	4.8	28
5	Humidity-Tolerant Chemiresistive Gas Sensors Based on Hydrophobic CeO ₂ /SnO ₂ Heterostructure Films. ACS Applied Materials & amp; Interfaces, 2022, 14, 25680-25692.	8.0	41
6	An Improved Dictionary-Based Method for Gas Identification with Electronic Nose. Applied Sciences (Switzerland), 2022, 12, 6650.	2.5	O
7	Fabrication of calcium carbonate coated-stainless steel mesh for efficient oil-water separation via bacterially induced biomineralization technique. Chemical Engineering Journal, 2021, 405, 126597.	12.7	51
8	Highly sensitive acetone sensor based on WO3 nanosheets derived from WS2 nanoparticles with inorganic fullerene-like structures. Sensors and Actuators B: Chemical, 2021, 343, 130135.	7.8	46
9	Metal-organic framework-derived porous SnO2 nanosheets with grain sizes comparable to Debye length for formaldehyde detection with high response and low detection limit. Sensors and Actuators B: Chemical, 2021, 347, 130599.	7.8	30
10	Low-Temperature Wearable Strain Sensor Based on a Silver Nanowires/Graphene Composite with a Near-Zero Temperature Coefficient of Resistance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55307-55318.	8.0	41
11	W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sensors and Actuators B: Chemical, 2020, 304, 127274.	7.8	195
12	A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions. Journal of Materials Chemistry C, 2020, 8, 2074-2085.	5.5	67
13	Maskless Formation of Conductive Carbon Layer on Leather for Highly Sensitive Flexible Strain Sensors. Advanced Electronic Materials, 2020, 6, 2000549.	5.1	14
14	A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. Journal of Materials Science, 2019, 54, 7048-7061.	3.7	46
15	2D/2D Graphene Nanoplatelet–Tungsten Trioxide Hydrate Nanocomposites for Sensing Acetone. ACS Applied Nano Materials, 2019, 2, 1313-1324.	5.0	17
16	A bifunctional melamine sponge decorated with silver-reduced graphene oxide nanocomposite for oil-water separation and antibacterial applications. Applied Surface Science, 2019, 473, 1049-1061.	6.1	67
17	MnO2/g-C3N4@PPy nanocomposite for high-performance supercapacitor. Materials Letters, 2019, 236, 558-561.	2.6	38
18	Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices. Nanotechnology, 2018, 29, 185707.	2.6	15

#	Article	IF	CITATIONS
19	ZnO nanorods/carbon black-based flexible strain sensor for detecting human motions. Journal of Alloys and Compounds, 2018, 738, 111-117.	5.5	41
20	Insight into the Impact of Conducting Polyaniline/Graphene Nanosheets on Corrosion Mechanism of Zinc-Rich Epoxy Primers on Low Alloy DH32 Steel in Artificial Sea Water. Journal of the Electrochemical Society, 2018, 165, C878-C889.	2.9	23
21	Marine Bacteria Provide Lasting Anticorrosion Activity for Steel via Biofilm-Induced Mineralization. ACS Applied Materials & amp; Interfaces, 2018, 10, 40317-40327.	8.0	87
22	Adsorption and photocatalytic study of dye degradation over the gâ€C ₃ N ₄ /W ₁₈ O ₄₉ nanocomposite. Micro and Nano Letters, 2018, 13, 541-545.	1.3	7
23	Graphene-tungsten oxide nanocomposites with highly enhanced gas-sensing performance. Journal of Alloys and Compounds, 2017, 705, 659-667.	5.5	24
24	$\label{lem:mnosub} MnO < sub > 2 < / sub > / g-C < sub > 3 < / sub > N < sub > 4 < / sub > nanocomposite with highly enhanced supercapacitor performance. Nanotechnology, 2017, 28, 135705.$	2.6	93
25	Rare-earth-doped tungsten oxide microspheres with highly enhanced photocatalytic activites. Ceramics International, 2017, 43, 10263-10269.	4.8	18
26	Ag-W18O49-GO Nanocomposite as Highly Effective Antibacterial Agent with Capturing-Killing Mechanism. Nano, 2017, 12, 1750143.	1.0	1
27	Flexible electrochromic device based on WO3 $\hat{\text{A}}$ ·H2O nanoflakes synthesized by a facile sonochemical method. Materials Letters, 2016, 185, 319-322.	2.6	14
28	Efficient synthesis of silver-reduced graphene oxide composites with prolonged antibacterial effects. Ceramics International, 2016, 42, 9769-9778.	4.8	34
29	A general strategy for the synthesis of reduced graphene oxide-based composites. Ceramics International, 2015, 41, 7661-7668.	4.8	3
30	Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material. Electrochimica Acta, 2014, 129, 40-46.	5.2	38
31	Large-scale production of tungsten trioxide nanoparticles for electrochromic application. RSC Advances, 2014, 4, 8994.	3.6	10
32	A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on graphene oxide sheets. RSC Advances, 2013, 3, 15005.	3.6	39
33	Solvothermal synthesis of Ce-doped tungsten oxide nanostructures as visible-light-driven photocatalysts. Nanotechnology, 2011, 22, 265603.	2.6	43
34	Bundled tungsten oxide nanowires under thermal processing. Nanotechnology, 2008, 19, 305709.	2.6	69
35	PHASE COMPOSITION, MICROSTRUCTURE, AND TRIBOLOGICAL PROPERTY OF PLASMA-SPRAYED <font< a="">>TiC</font<> (font>-BASED COATING. Surface Review and Letters, 2008, 15, 815-819.	1.1	0