Kristian Gundersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1935824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15111-15116.	7.1	241
2	Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. Journal of Physiology, 2003, 551, 467-478.	2.9	211
3	Excitationâ€ŧranscription coupling in skeletal muscle: the molecular pathways of exercise. Biological Reviews, 2011, 86, 564-600.	10.4	201
4	Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development (Cambridge), 2016, 143, 2898-2906.	2.5	153
5	In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy. Journal of Clinical Investigation, 2008, 118, 1450-1457.	8.2	140
6	Fast to slow transformation of denervated and electrically stimulated rat muscle. Journal of Physiology, 1998, 510, 623-632.	2.9	132
7	Slowâ€ŧoâ€fast transformation of denervated soleus muscles by chronic highâ€frequency stimulation in the rat Journal of Physiology, 1988, 402, 627-649.	2.9	126
8	Muscle memory and a new cellular model for muscle atrophy and hypertrophy. Journal of Experimental Biology, 2016, 219, 235-242.	1.7	123
9	Distribution of myonuclei and microtubules in live muscle fibers of young, middle-aged, and old mice. Journal of Applied Physiology, 2006, 100, 2024-2030.	2.5	117
10	Nuclear domains during muscle atrophy: nuclei lost or paradigm lost?. Journal of Physiology, 2008, 586, 2675-2681.	2.9	111
11	Fibre types, calciumâ€ s equestering proteins and metabolic enzymes in denervated and chronically stimulated muscles of the rat Journal of Physiology, 1988, 398, 177-189.	2.9	107
12	A cellular memory mechanism aids overload hypertrophy in muscle long after an episodic exposure to anabolic steroids. Journal of Physiology, 2013, 591, 6221-6230.	2.9	101
13	Electrical stimulation resembling normal motor-unit activity: effects on denervated fast and slow rat muscles Journal of Physiology, 1988, 402, 651-669.	2.9	97
14	No change in myonuclear number during muscle unloading and reloading. Journal of Applied Physiology, 2012, 113, 290-296.	2.5	89
15	Neural regulation of muscle acetylcholine receptor epsilon- and alpha-subunit gene promoters in transgenic mice Journal of Cell Biology, 1993, 123, 1535-1544.	5.2	77
16	Deâ€phosphorylation of MyoD is linking nerveâ€evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle. Journal of Physiology, 2007, 584, 637-650.	2.9	57
17	Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nature Communications, 2020, 11, 6287.	12.8	57
18	DNA Injection into Single Cells of Intact Mice. Human Gene Therapy, 1999, 10, 291-300.	2.7	51

Kristian Gundersen

#	Article	IF	CITATIONS
19	Myonuclear content regulates cell size with similar scaling properties in mice and humans. Nature Communications, 2020, 11, 6288.	12.8	49
20	Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. Journal of Applied Physiology, 2019, 126, 1636-1645.	2.5	48
21	Hypoxia inducible factor 1α links fastâ€patterned muscle activity and fast muscle phenotype in rats. Journal of Physiology, 2011, 589, 1443-1454.	2.9	46
22	Id-1 as a possible transcriptional mediator of muscle disuse atrophy Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3647-3651.	7.1	45
23	Specific labelling of myonuclei by an antibody against pericentriolar material 1 on skeletal muscle tissue sections. Acta Physiologica, 2018, 223, e13034.	3.8	41
24	PPARδ expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer. Journal of Physiology, 2007, 582, 1277-1287.	2.9	40
25	Activity-dependent repression of muscle genes by NFAT. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5921-5926.	7.1	39
26	Increased hypertrophic response with increased mechanical load in skeletal muscles receiving identical activity patterns. American Journal of Physiology - Cell Physiology, 2016, 311, C616-C629.	4.6	29
27	Muscle hypertrophy induced by the Ski protein: cyto-architecture and ultrastructure. Acta Physiologica Scandinavica, 2005, 185, 141-149.	2.2	22
28	An apparent lack of effect of satellite cell depletion on hypertrophy could be due to methodological limitations. Response to â€~Methodological issues limit interpretation of negative effects of satellite cell depletion on adult muscle hypertrophy'. Development (Cambridge), 2017, 144, 1365-1367.	2.5	19
29	Muscle memory: virtues of your youth?. Journal of Physiology, 2018, 596, 4289-4290.	2.9	18
30	Cachexia does not induce loss of myonuclei or muscle fibres during xenografted prostate cancer in mice. Acta Physiologica, 2019, 225, e13204.	3.8	13
31	Comparing the epigenetic landscape in myonuclei purified with a PCM1 antibody from a fast/glycolytic and a slow/oxidative muscle. PLoS Genetics, 2021, 17, e1009907.	3.5	12
32	Overexpression of SMPX in Adult Skeletal Muscle Does not Change Skeletal Muscle Fiber Type or Size. PLoS ONE, 2014, 9, e99232.	2.5	11
33	Cross Talk opposing view: Myonuclei do not undergo apoptosis during skeletal muscle atrophy. Journal of Physiology, 2022, 600, 2081-2084.	2.9	8
34	Muscle memory: are myonuclei ever lost?. Journal of Applied Physiology, 2020, 128, 456-457.	2.5	7
35	Computational Assessment of Transport Distances in Living Skeletal Muscle Fibers Studied In Situ. Biophysical Journal, 2020, 119, 2166-2178.	0.5	6
36	Cross Talk rebuttal: Schwartz and Gundersen. Journal of Physiology, 2022, 600, 2087-2088.	2.9	4