
Ralf Thomas Weitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/193432/publications.pdf Version: 2024-02-01

PALE THOMAS WEITZ

#	Article	IF	CITATIONS
1	Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters, 2007, 7, 3499-3503.	9.1	2,177
2	Contact and edge effects in graphene devices. Nature Nanotechnology, 2008, 3, 486-490.	31.5	658
3	Broken-Symmetry States in Doubly Gated Suspended Bilayer Graphene. Science, 2010, 330, 812-816.	12.6	355
4	Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures. Nano Letters, 2009, 9, 2372-2377.	9.1	276
5	Organic n-Channel Transistors Based on Core-Cyanated Perylene Carboxylic Diimide Derivatives. Journal of the American Chemical Society, 2008, 130, 4637-4645.	13.7	262
6	Electronic decoupling of an epitaxial graphene monolayer by gold intercalation. Physical Review B, 2010, 81, .	3.2	214
7	Polymer Nanofibers via Nozzle-Free Centrifugal Spinning. Nano Letters, 2008, 8, 1187-1191.	9.1	193
8	Inkjet-printed energy storage device using graphene/polyaniline inks. Journal of Power Sources, 2014, 248, 483-488.	7.8	182
9	Local Compressibility Measurements of Correlated States in Suspended Bilayer Graphene. Physical Review Letters, 2010, 105, 256806.	7.8	142
10	Flexible low-voltage high-frequency organic thin-film transistors. Science Advances, 2020, 6, eaaz5156.	10.3	133
11	Vertical, electrolyte-gated organic transistors show continuous operation in the MA cmâ^'2 regime and artificial synaptic behaviour. Nature Nanotechnology, 2019, 14, 579-585.	31.5	128
12	Organic Transistors Based on Di(phenylvinyl)anthracene: Performance and Stability. Advanced Materials, 2007, 19, 3882-3887.	21.0	120
13	High-Performance Carbon Nanotube Field Effect Transistors with a Thin Gate Dielectric Based on a Self-Assembled Monolayer. Nano Letters, 2007, 7, 22-27.	9.1	102
14	Bias stress effect in low-voltage organic thin-film transistors. Applied Physics A: Materials Science and Processing, 2009, 95, 139-145.	2.3	95
15	Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects. ACS Applied Materials & Interfaces, 2015, 7, 22775-22785.	8.0	87
16	Direct Uniaxial Alignment of a Donor–Acceptor Semiconducting Polymer Using Single-Step Solution Shearing. ACS Applied Materials & Interfaces, 2016, 8, 9285-9296.	8.0	87
17	Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres. ACS Nano, 2015, 9, 31-42.	14.6	82
18	Energy barriers at grain boundaries dominate charge carrier transport in an electron-conductive organic semiconductor. Scientific Reports, 2018, 8, 14868.	3.3	73

#	Article	IF	CITATIONS
19	Carbon nanotube transistors – chemical functionalization and device characterization. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 633-646.	1.8	68
20	Top-Gate ZnO Nanowire Transistors and Integrated Circuits with Ultrathin Self-Assembled Monolayer Gate Dielectric. Nano Letters, 2011, 11, 5309-5315.	9.1	65
21	High-Mobility, Ultrathin Organic Semiconducting Films Realized by Surface-Mediated Crystallization. Nano Letters, 2018, 18, 9-14.	9.1	64
22	A Critical Outlook for the Pursuit of Lower Contact Resistance in Organic Transistors. Advanced Materials, 2022, 34, e2104075.	21.0	53
23	Core-Fluorinated Naphthalene Diimides: Synthesis, Characterization, and Application in n-Type Organic Field-Effect Transistors. Organic Letters, 2016, 18, 456-459.	4.6	52
24	Effect of the Degree of the Gateâ€Dielectric Surface Roughness on the Performance of Bottomâ€Gate Organic Thinâ€Film Transistors. Advanced Materials Interfaces, 2020, 7, 1902145.	3.7	52
25	The Importance of Grain Boundaries for the Time-Dependent Mobility Degradation in Organic Thin-Film Transistors. Chemistry of Materials, 2009, 21, 4949-4954.	6.7	47
26	Diketopyrrolopyrrole (DPP)â€Based Donor–Acceptor Polymers for Selective Dispersion of Largeâ€Điameter Semiconducting Carbon Nanotubes. Small, 2015, 11, 2946-2954.	10.0	47
27	Graphene rests easy. Nature Nanotechnology, 2010, 5, 699-700.	31.5	46
28	Understanding Polymorph Transformations in Coreâ€Chlorinated Naphthalene Diimides and their Impact on Thinâ€Film Transistor Performance. Advanced Functional Materials, 2016, 26, 2357-2364.	14.9	42
29	Highly Reliable Carbon Nanotube Transistors with Patterned Gates and Molecular Gate Dielectric. Nano Letters, 2009, 9, 1335-1340.	9.1	40
30	New Charge-Transfer Salts for Reversible Resistive Memory Switching. Nano Letters, 2006, 6, 2810-2813.	9.1	39
31	Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene. Nature, 2021, 598, 53-58.	27.8	39
32	Metal-free synthesis of nanocrystalline graphene on insulating substrates by carbon dioxide-assisted chemical vapor deposition. Carbon, 2017, 112, 201-207.	10.3	38
33	Strong pâ€Type Doping of Individual Carbon Nanotubes by Prussian Blue Functionalization. Small, 2008, 4, 1671-1675.	10.0	37
34	Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal–Organic Framework Films toward Directional Charge Transport. Journal of the American Chemical Society, 2021, 143, 13624-13632.	13.7	36
35	Dispersion of Highâ€Purity Semiconducting Arcâ€Discharged Carbon Nanotubes Using Backbone Engineered Diketopyrrolopyrrole (DPP)â€Based Polymers. Advanced Electronic Materials, 2016, 2, 1500299.	5.1	35
36	Transconductance Fluctuations as a Probe for Interaction-Induced Quantum Hall States in Graphene. Physical Review Letters, 2012, 109, 056602.	7.8	32

#	Article	IF	CITATIONS
37	Electrical Characteristics of Fieldâ€Effect Transistors based on Chemically Synthesized Graphene Nanoribbons. Advanced Electronic Materials, 2015, 1, 1400010.	5.1	32
38	DNA-templated synthesis of ZnO thin layers and nanowires. Nanotechnology, 2009, 20, 365302.	2.6	30
39	Presence of Short Intermolecular Contacts Screens for Kinetic Stability in Packing Polymorphs. Journal of the American Chemical Society, 2018, 140, 7519-7525.	13.7	29
40	Nanoscopic Electrolyte-Gated Vertical Organic Transistors with Low Operation Voltage and Five Orders of Magnitude Switching Range for Neuromorphic Systems. Nano Letters, 2022, 22, 973-978.	9.1	27
41	Separating the impact of oxygen and water on the long-term stability of n-channel perylene diimide thin-film transistors. Organic Electronics, 2015, 26, 340-344.	2.6	26
42	Crystalline Inverted Membranes Grown on Surfaces by Electrospray Ion Beam Deposition in Vacuum. Advanced Materials, 2012, 24, 2761-2767.	21.0	25
43	Anisotropic Strain-Induced Soliton Movement Changes Stacking Order and Band Structure of Graphene Multilayers: Implications for Charge Transport. ACS Applied Nano Materials, 2019, 2, 6067-6075.	5.0	24
44	Quantitative Analysis of the Density of Trap States in Semiconductors by Electrical Transport Measurements on Low-Voltage Field-Effect Transistors. Physical Review Applied, 2018, 10, .	3.8	23
45	Synthesis of large-area rhombohedral few-layer graphene by chemical vapor deposition on copper. Carbon, 2021, 177, 282-290.	10.3	22
46	Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating. Macromolecules, 2018, 51, 4325-4340.	4.8	21
47	Plasmonic nanostructures in apertureâ€less scanning nearâ€field optical microscopy (aSNOM). Physica Status Solidi (B): Basic Research, 2008, 245, 2255-2260.	1.5	20
48	Complete Suppression of Bias-Induced Threshold Voltage Shift below 273 K in Solution-Processed High-Performance Organic Transistors. ACS Applied Materials & Interfaces, 2018, 10, 35449-35454.	8.0	20
49	Optimizing the plasma oxidation of aluminum gate electrodes for ultrathin gate oxides in organic transistors. Scientific Reports, 2021, 11, 6382.	3.3	19
50	lonic gel as gate dielectric for the easy characterization of graphene and polymer field-effect transistors and electrochemical resistance modification of graphene. Journal of Applied Physics, 2015, 118, .	2.5	18
51	High-Performance Vertical Organic Transistors of Sub-5 nm Channel Length. Nano Letters, 2021, 21, 4430-4436.	9.1	18
52	Subthreshold Swing of 59ÂmV decade ^{â^'1} in Nanoscale Flexible Ultralowâ€Voltage Organic Transistors. Advanced Electronic Materials, 2022, 8, .	5.1	18
53	Oneâ€Dimensional Heterostructures of Singleâ€Walled Carbon Nanotubes and CdSe Nanowires. Small, 2010, 6, 376-380.	10.0	17
54	Materials depth distribution and degradation of a FIrpic based solution-processed blue OLED. Organic Electronics, 2015, 26, 365-370.	2.6	17

#	Article	IF	CITATIONS
55	Solutionâ€Processed Organic Transistors with Excellent Electrical Stability under Ambient Conditions. Advanced Electronic Materials, 2019, 5, 1900295.	5.1	17
56	Photo-Cross-Linkable Polymeric Optoelectronics Based on the [2 + 2] Cycloaddition Reaction of Cinnamic Acid. Macromolecules, 2016, 49, 1518-1522.	4.8	16
57	Dielectric–Semiconductor Interface Limits Charge Carrier Motion at Elevated Temperatures and Large Carrier Densities in a Highâ€Mobility Organic Semiconductor. Advanced Functional Materials, 2019, 29, 1807867.	14.9	16
58	Logic circuits based on individual semiconducting and metallic carbon-nanotube devices. Nanotechnology, 2010, 21, 475207.	2.6	13
59	Low-voltage organic n-channel thin-film transistors based on a core-cyanated perylene tetracarboxylic diimide derivative. Synthetic Metals, 2009, 159, 2362-2364.	3.9	12
60	Charge Traps in Allâ€Inorganic CsPbBr ₃ Perovskite Nanowire Fieldâ€Effect Phototransistors. Advanced Electronic Materials, 2021, 7, 2100105.	5.1	12
61	E-beam lithography of catalyst patterns for carbon nanotube growth on insulating substrates. Microelectronic Engineering, 2008, 85, 768-773.	2.4	11
62	Electrochemically modified singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4021-4025.	1.5	10
63	Identification of grain boundaries as degradation site in n-channel organic field-effect transistors determined via conductive atomic force microscopy. Physica Status Solidi - Rapid Research Letters, 2016, 10, 339-345.	2.4	9
64	Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation. Scientific Reports, 2016, 6, 26259.	3.3	8
65	Bulk transport and contact limitation of MoS ₂ multilayer flake transistors untangled via temperature-dependent transport measurements. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2059-2067.	1.8	6
66	Solvent–Molecule Interactions Govern Crystal-Habit Selection in Naphthalene Tetracarboxylic Diimides. Chemistry of Materials, 2019, 31, 9691-9698.	6.7	6
67	Growth mechanism of solution-deposited layers of the charge-transfer salt CuDDQ. Physica Status Solidi (B): Basic Research, 2007, 244, 4346-4350.	1.5	5
68	lonic liquid gating of single-walled carbon nanotube devices with ultra-short channel length down to 10 nm. Applied Physics Letters, 2021, 118, .	3.3	5
69	Charge transport in semiconducting polymers at the nanoscale. APL Materials, 2021, 9, .	5.1	5
70	All About the Interface: Do Residual Contaminants at A Highâ€Quality hâ€BN Monolayer Perylene Diimide Interface Cause Charge Trapping?. Advanced Materials Interfaces, 2022, 9, .	3.7	5
71	Freely Suspended, van der Waals Bound Organic Nanometerâ€Thin Functional Films: Mechanical and Electronic Characterization. Advanced Materials, 2019, 31, 1808309.	21.0	4
72	Locally-triggered hydrophobic collapse induces global interface self-cleaning in van-der-Waals heterostructures at room-temperature. 2D Materials, 2020, 7, 035002.	4.4	4

#	Article	IF	CITATIONS
73	Low-voltage metal-gate top-contact organic thin-film transistors and complementary inverters with submicron channel length. , 2009, , .		3
74	Understanding organic thin-film transistor fabrication based on application-relevant deposition and patterning techniques. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1634-1642.	1.8	3
75	Spontaneous Gully-Polarized Quantum Hall States in ABA Trilayer Graphene. Nano Letters, 2022, 22, 3317-3322.	9.1	3
76	Single-walled carbon nanotube transistors on an ultra-thin gate dielectric. Physica Status Solidi (B): Basic Research, 2006, 243, 3394-3398.	1.5	1
77	Low-Voltage Organic Thin-Film Transistors with Improved Stability and Large Transconductance. Device Research Conference, IEEE Annual, 2007, , .	0.0	0
78	Carbon Nanotube Transistors– Chemical Functionalisation and Device Characterisation. , 0, , 565-593.		0
79	Top-gate ZnO nanowire transistors with ultrathin organic gate dielectric. , 2009, , .		Ο
80	Back Cover: Identification of grain boundaries as degradation site in n-channel organic field-effect transistors determined via conductive atomic force microscopy (Phys. Status Solidi RRL 4/2016). Physica Status Solidi - Rapid Research Letters, 2016, 10, .	2.4	0
81	Polymorphism: Understanding Polymorph Transformations in Core-Chlorinated Naphthalene Diimides and their Impact on Thin-Film Transistor Performance (Adv. Funct. Mater. 14/2016). Advanced Functional Materials, 2016, 26, 2395-2395.	14.9	0
82	Organic monolayer dielectric for high-performance carbon nanotube transistors. SPIE Newsroom, 2007, , .	0.1	0
83	Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating. MRS Bulletin, 0, , 1-14.	3.5	0
84	All About the Interface: Do Residual Contaminants at A Highâ€Quality hâ€BN Monolayer Perylene Diimide Interface Cause Charge Trapping? (Adv. Mater. Interfaces 10/2022). Advanced Materials Interfaces, 2022, 9, .	3.7	0