
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/19337/publications.pdf Version: 2024-02-01

DETED | DEAD

#	Article	IF	CITATIONS
1	Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 1999, 104, 24155-24175.	3.3	955
2	A climate database for Mars. Journal of Geophysical Research, 1999, 104, 24177-24194.	3.3	299
3	Exploring The Saturn System In The Thermal Infrared: The Composite Infrared Spectrometer. Space Science Reviews, 2004, 115, 169-297.	8.1	275
4	Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. Journal of Geophysical Research, 2007, 112, .	3.3	229
5	Modeling the Martian dust cycle, 1. Representations of dust transport processes. Journal of Geophysical Research, 2002, 107, 6-1-6-18.	3.3	194
6	Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols. Journal of Geophysical Research, 2010, 115, .	3.3	183
7	Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research, 2002, 107, 7-1-7-15.	3.3	121
8	THE MARTIAN ATMOSPHERIC BOUNDARY LAYER. Reviews of Geophysics, 2011, 49, .	23.0	119
9	Saturn's rotation period from its atmospheric planetary-wave configuration. Nature, 2009, 460, 608-610.	27.8	105
10	An intense stratospheric jet on Jupiter. Nature, 2004, 427, 132-135.	27.8	103
11	Temperature and Composition of Saturn's Polar Hot Spots and Hexagon. Science, 2008, 319, 79-81.	12.6	103
12	The Atmospheric Dynamics of Venus. Space Science Reviews, 2017, 212, 1541-1616.	8.1	95
13	Anisotropic turbulence and zonal jets in rotating flows with a β-effect. Nonlinear Processes in Geophysics, 2006, 13, 83-98.	1.3	94
14	Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus, 2007, 192, 327-347.	2.5	91
15	Quasi-periodic and chaotic flow regimes in a thermally driven, rotating fluid annulus. Journal of Fluid Mechanics, 1992, 238, 599-632.	3.4	83
16	The solsticial pause on Mars: 1. A planetary wave reanalysis. Icarus, 2016, 264, 456-464.	2.5	74
17	Intense polar temperature inversion in the middle atmosphere on Mars. Nature Geoscience, 2008, 1, 745-749.	12.9	71
18	Forward and inverse kinetic energy cascades in Jupiter's turbulent weather layer. Nature Physics, 2017, 13, 1135-1140.	16.7	71

#	Article	IF	CITATIONS
19	Inertia–Gravity Waves Emitted from Balanced Flow: Observations, Properties, and Consequences. Journals of the Atmospheric Sciences, 2008, 65, 3543-3556.	1.7	70
20	A laboratory model of Saturn's North Polar Hexagon. Icarus, 2010, 206, 755-763.	2.5	69
21	Wave interactions and the transition to chaos of baroclinic waves in a thermally driven rotating annulus. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 101-153.	3.4	68
22	Superrotation in a Venus general circulation model. Journal of Geophysical Research, 2007, 112, .	3.3	65
23	Superrotation on Venus, on Titan, and Elsewhere. Annual Review of Earth and Planetary Sciences, 2018, 46, 175-202.	11.0	64
24	On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. Journal of Fluid Mechanics, 2005, 528, 1-22.	3.4	63
25	Mapping potential-vorticity dynamics on Jupiter. I: Zonal-mean circulation from Cassini and Voyager 1 data. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1577-1603.	2.7	63
26	Dynamics of Convectively Driven Banded Jets in the Laboratory. Journals of the Atmospheric Sciences, 2007, 64, 4031-4052.	1.7	63
27	Upper atmosphere of Mars up to 120 km: Mars Clobal Surveyor accelerometer data analysis with the LMD general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	62
28	The Mars Analysis Correction Data Assimilation (<scp>MACDA</scp>) Dataset V1.0. Geoscience Data Journal, 2014, 1, 129-139.	4.4	61
29	Titan's winter polar vortex structure revealed by chemical tracers. Journal of Geophysical Research, 2008, 113, .	3.3	58
30	An isolated baroclinic eddy as a laboratory analogue of the Great Red Spot on Jupiter. Nature, 1984, 308, 45-48.	27.8	56
31	Experiments on a barotropic rotating shear layer. Part 1. Instability and steady vortices. Journal of Fluid Mechanics, 1999, 383, 143-173.	3.4	56
32	The physics of Martian weather and climate: a review. Reports on Progress in Physics, 2015, 78, 125901.	20.1	54
33	Super-rotation and diffusion of axial angular momentum: II. A review of quasi-axisymmetric models of planetary atmospheres. Quarterly Journal of the Royal Meteorological Society, 1986, 112, 253-272.	2.7	53
34	Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations. Advances in Space Research, 2005, 36, 2146-2155.	2.6	51
35	Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus, 2014, 229, 295-320.	2.5	50
36	Long-lived eddies in the laboratory and in the atmospheres of Jupiter and Saturn. Nature, 1983, 302, 126-129.	27.8	46

#	Article	IF	CITATIONS
37	Spontaneous generation and impact of inertia-gravity waves in a stratified, two-layer shear flow. Geophysical Research Letters, 2003, 30, .	4.0	46
38	Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds. Icarus, 2013, 223, 344-358.	2.5	45
39	Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 550-562.	2.7	45
40	Turbulence, waves, and jets in a differentially heated rotating annulus experiment. Physics of Fluids, 2008, 20, .	4.0	44
41	Transition To Geostrophic Turbulence In The Laboratory, And As A Paradigm In Atmospheres And Oceans. Surveys in Geophysics, 2001, 22, 265-317.	4.6	42
42	Jupiter's and Saturn's convectively driven banded jets in the laboratory. Geophysical Research Letters, 2004, 31, .	4.0	42
43	Experiments on the structure of baroclinic waves and zonal jets in an internally heated, rotating, cylinder of fluid. Physics of Fluids, 1998, 10, 374-389.	4.0	38
44	Saturn Atmospheric Structure and Dynamics. , 2009, , 113-159.		38
45	A hexagon in Saturn's northern stratosphere surrounding the emerging summertime polar vortex. Nature Communications, 2018, 9, 3564.	12.8	36
46	Equatorial jets in the dusty Martian atmosphere. Journal of Geophysical Research, 2003, 108, .	3.3	33
47	Saturn's emitted power. Journal of Geophysical Research, 2010, 115, .	3.3	33
48	Simulating Jupiter's weather layer. Part I: Jet spin-up in a dry atmosphere. Icarus, 2019, 326, 225-252.	2.5	33
49	Geostrophic Scatter Diagrams and Potential Vorticity Dynamics. Journals of the Atmospheric Sciences, 1986, 43, 3226-3240.	1.7	32
50	Wave interactions and baroclinic chaos: a paradigm for long timescale variability in planetary atmospheres. Chaos, Solitons and Fractals, 1998, 9, 231-249.	5.1	30
51	Direct numerical simulations of bifurcations in an air-filled rotating baroclinic annulus. Journal of Fluid Mechanics, 2006, 561, 359.	3.4	30
52	Global energy budgets and †Trenberth diagrams' for the climates of terrestrial and gas giant planets. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 703-720.	2.7	28
53	A laboratory study of baroclinic waves and turbulence in an internally heated rotating fluid annulus with sloping endwalls. Journal of Fluid Mechanics, 1997, 339, 173-198.	3.4	27
54	Synchronization in a Pair of Thermally Coupled Rotating Baroclinic Annuli: Understanding Atmospheric Teleconnections in the Laboratory. Physical Review Letters, 2010, 104, 204501.	7.8	25

#	Article	IF	CITATIONS
55	Assessing atmospheric predictability on Mars using numerical weather prediction and data assimilation. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 1614-1635.	2.7	24
56	Comparative terrestrial atmospheric circulation regimes in simplified global circulation models. Part I: From cyclostrophic superâ€rotation to geostrophic turbulence. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 2537-2557.	2.7	24
57	Regimes of axisymmetric flow in an internally heated rotating fluid. Journal of Fluid Mechanics, 1986, 168, 255.	3.4	23
58	Temperature time-series?. Nature, 1992, 355, 686-686.	27.8	23
59	Western boundary currents in the atmosphere of Mars. Nature, 1994, 367, 548-551.	27.8	23
60	Testing the limits of quasi-geostrophic theory: application to observed laboratory flows outside the quasi-geostrophic regime. Journal of Fluid Mechanics, 2010, 649, 187-203.	3.4	23
61	Models of Venus Atmosphere. , 2013, , 129-156.		23
62	A combined laboratory and numerical study of heat transport by baroclinic eddies and axisymmetric flows. Journal of Fluid Mechanics, 2003, 489, 301-323.	3.4	22
63	Synchronisation of the equatorial QBO by the annual cycle in tropical upwelling in a warming climate. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 1111-1120.	2.7	21
64	An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane. Physics of Fluids, 2015, 27, .	4.0	20
65	Bifurcations and instabilities in rotating, two-layer fluids: II. β-plane. Nonlinear Processes in Geophysics, 2002, 9, 289-309.	1.3	19
66	Generation of inertia–gravity waves in the rotating thermal annulus by a localised boundary layer instability. Geophysical and Astrophysical Fluid Dynamics, 2011, 105, 161-181.	1.2	19
67	An assessment of the impact of local processes on dust lifting in martian climate models. Icarus, 2015, 252, 212-227.	2.5	17
68	Laboratory and numerical studies of baroclinic waves in an internally heated rotating fluid annulus: a case of wave/vortex duality?. Journal of Fluid Mechanics, 1997, 337, 155-191.	3.4	16
69	A bulk cloud parameterization in a Venus General Circulation Model. Icarus, 2010, 206, 662-668.	2.5	16
70	Baroclinic and barotropic instabilities in planetary atmospheres: energetics, equilibration and adjustment. Nonlinear Processes in Geophysics, 2020, 27, 147-173.	1.3	16
71	The effect of a global dust storm on simulations of the Martian water cycle. Geophysical Research Letters, 2004, 31, .	4.0	15
72	A regime diagram for ocean geostrophic turbulence. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2411-2417.	2.7	15

#	Article	IF	CITATIONS
73	Descent Rate Models of the Synchronization of the Quasi-Biennial Oscillation by the Annual Cycle in Tropical Upwelling. Journals of the Atmospheric Sciences, 2018, 75, 2281-2297.	1.7	15
74	Temperature oscillations. Nature, 1992, 359, 679-679.	27.8	14
75	Nonconservation of Ertel Potential Vorticity in Hydrogen Atmospheres. Journals of the Atmospheric Sciences, 2004, 61, 1953-1965.	1.7	14
76	Synchronization of modulated traveling baroclinic waves in a periodically forced, rotating fluid annulus. Physical Review E, 2009, 79, 015202.	2.1	14
77	A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment. Experiments in Fluids, 2017, 58, 1.	2.4	14
78	Gas Giants. , 2019, , 72-103.		14
79	A Lorenz/Boer energy budget for the atmosphere of Mars from a "reanalysis―of spacecraft observations. Geophysical Research Letters, 2015, 42, 8320-8327.	4.0	13
80	Super-rotation and diffusion of axial angular momentum: I. â€~Speed limits' for axisymmetric flow in a rotating cylindrical fluid annulus. Quarterly Journal of the Royal Meteorological Society, 1986, 112, 231-251.	2.7	12
81	Simulating Jupiter's weather layer. Part II: Passive ammonia and water cycles. Icarus, 2019, 326, 253-268.	2.5	12
82	Bifurcations and instabilities in rotating two-layer fluids: I.f-plane. Nonlinear Processes in Geophysics, 2001, 8, 21-36.	1.3	11
83	Reconstructing the weather on Mars at the time of the MERs and Beagle 2 landings. Geophysical Research Letters, 2006, 33, .	4.0	11
84	Comparative terrestrial atmospheric circulation regimes in simplified global circulation models. Part II: Energy budgets and spectral transfers. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 2558-2576.	2.7	11
85	Phase synchronization between stratospheric and tropospheric quasiâ€biennial and semiâ€annual oscillations. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1338-1349.	2.7	10
86	Data assimilation in the laboratory using a rotating annulus experiment. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1488-1504.	2.7	9
87	A laboratory study of global-scale wave interactions in baroclinic flow with topography I: multiple flow regimes. Geophysical and Astrophysical Fluid Dynamics, 2011, 105, 128-160.	1.2	8
88	Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing. Fluids, 2017, 2, 41.	1.7	8
89	Non-axisymmetric flows in a differential-disk rotating system. Journal of Fluid Mechanics, 2015, 775, 349-386.	3.4	7
90	Investigating the semiannual oscillation on Mars using data assimilation. Icarus, 2019, 333, 404-414.	2.5	7

#	Article	IF	CITATIONS
91	Storm-clouds brooding on towering heights. Nature, 2011, 475, 44-45.	27.8	6
92	A laboratory study of global-scale wave interactions in baroclinic flow with topography II: vacillations and low-frequency variability. Geophysical and Astrophysical Fluid Dynamics, 2015, 109, 359-390.	1.2	6
93	Phase synchronization of baroclinic waves in a differentially heated rotating annulus experiment subject to periodic forcing with a variable duty cycle. Chaos, 2017, 27, 127001.	2.5	6
94	Wave number selection in the presence of noise: Experimental results. Chaos, 2018, 28, 053110.	2.5	6
95	Potential Vorticity of Saturn's Polar Regions: Seasonality and Instabilities. Journal of Geophysical Research E: Planets, 2019, 124, 186-201.	3.6	6
96	The turbulent dynamics of Jupiter's and Saturn's weather layers: order out of chaos?. Geoscience Letters, 2020, 7, .	3.3	6
97	An experimental investigation into topographic resonance in a baroclinic rotating annulus. Geophysical and Astrophysical Fluid Dynamics, 2015, 109, 391-421.	1.2	5
98	An experimental investigation of blocking by partial barriers in a rotating baroclinic annulus. Geophysical and Astrophysical Fluid Dynamics, 2018, 112, 97-129.	1.2	5
99	Ertel potential vorticity versus Bernoulli streamfunction on Mars. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 37-52.	2.7	4
100	Revealing the Intensity of Turbulent Energy Transfer in Planetary Atmospheres. Geophysical Research Letters, 2020, 47, e2020GL088685.	4.0	4
101	Assimilation of Both Column―and Layerâ€Integrated Dust Opacity Observations in the Martian Atmosphere. Earth and Space Science, 2021, 8, .	2.6	4
102	Clearer circulation on Uranus. Nature, 1987, 325, 197-198.	27.8	3
103	Atmospheric Dynamics of Terrestrial Planets. , 2018, , 1-31.		3
104	Super-rotation and diffusion of axial angular momentum: II. A review of quasi-axisymmetric models of planetary atmospheres. Quarterly Journal of the Royal Meteorological Society, 1986, 112, 253-272.	2.7	3
105	Diversity of Planetary Atmospheric Circulations and Climates in a Simplified General Circulation Model. Proceedings of the International Astronomical Union, 2012, 8, 297-302.	0.0	2
106	Plumbing the depths of Uranus and Neptune. Nature, 2013, 497, 323-324.	27.8	2
107	A Sea Change in Exoplanet Climate Models?. Astrobiology, 2014, 14, 627-628.	3.0	2
108	Predictability of the thermally driven laboratory rotating annulus. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 911-927.	2.7	2

#	Article	IF	CITATIONS
109	A Chorus of the Winds-On Saturn!. Journal of Geophysical Research E: Planets, 2018, 123, 1007-1011.	3.6	2
110	Raymond Hide. 17 May 1929—6 September 2016. Biographical Memoirs of Fellows of the Royal Society, 2019, 67, 191-215.	0.1	2
111	Thermal versus mechanical topography: an experimental investigation in a rotating baroclinic annulus. Geophysical and Astrophysical Fluid Dynamics, 2020, 114, 763-797.	1.2	2
112	Characterizing Regimes of Atmospheric Circulation in Terms of Their Global Superrotation. Journals of the Atmospheric Sciences, 2021, 78, 1245-1258.	1.7	2
113	Energy Exchanges in Saturn's Polar Regions From Cassini Observations: Eddyâ€Zonal Flow Interactions. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	1
114	Predicting chaotic climates: from Earth to super-Earths?. , 2010, , .		0
115	Assimilating and Modeling Dust Transport in the Martian Climate System. Proceedings of the International Astronomical Union, 2012, 8, 326-328.	0.0	0
116	Pen portraits of <scp>Presidents</scp> – <scp>Professor Raymond Hide</scp> , <scp>CBE</scp> , <scp>ScD</scp> , <scp>FRS</scp> . Weather, 2022, 77, 103-107.	0.7	0