MarÃ-a JesÃ^os Larriba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1933643/publications.pdf

Version: 2024-02-01

126907 223800 3,314 50 33 46 citations g-index h-index papers 4287 50 50 50 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nature Medicine, 2004, 10, 917-919.	30.7	269
2	The Wnt antagonist DICKKOPF-1 gene is induced by $1\hat{A}$,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis, 2007, 28, 1877-1884.	2.8	166
3	Genetic signatures of differentiation induced by 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Cancer Research, 2003, 63, 7799-806.	0.9	158
4	KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Human Molecular Genetics, 2011, 20, 4655-4665.	2.9	145
5	Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Research, 2006, 34, 2077-2084.	14.5	135
6	E-cadherin controls \hat{l}^2 -catenin and NF- \hat{l}^2 B transcriptional activity in mesenchymal gene expression. Journal of Cell Science, 2008, 121, 2224-2234.	2.0	132
7	Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer. Gut, 2017, 66, 1449-1462.	12.1	131
8	Vitamin D Receptor Deficiency Enhances Wnt/ \hat{l}^2 -Catenin Signaling and Tumor Burden in Colon Cancer. PLoS ONE, 2011, 6, e23524.	2.5	127
9	Snail2 cooperates with Snail1 in the repression of vitamin D receptor in colon cancer. Carcinogenesis, 2009, 30, 1459-1468.	2.8	119
10	Vitamin D Is a Multilevel Repressor of Wnt/b-Catenin Signaling in Cancer Cells. Cancers, 2013, 5, 1242-1260.	3.7	116
11	Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle, 2012, 11, 1081-1089.	2.6	112
12	RhoA–ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells. Journal of Cell Biology, 2008, 183, 697-710.	5.2	102
13	Vitamin D and colon cancer. Endocrine-Related Cancer, 2012, 19, R51-R71.	3.1	100
14	Mechanisms of action of vitamin D in colon cancer. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 1-6.	2.5	94
15	The endocrine vitamin D system in the gut. Molecular and Cellular Endocrinology, 2017, 453, 79-87.	3.2	93
16	Vitamin D and cancer: an update of in vitro and in vivo data. Frontiers in Bioscience - Landmark, 2005, 10, 2723.	3.0	90
17	The inhibition of Wnt $\hat{\mathbb{I}}^2$ -catenin signalling by $\hat{\mathbb{I}}_{\pm}$,25-dihydroxyvitamin D3 is abrogated by Snail1 in human colon cancer cells. Endocrine-Related Cancer, 2007, 14, 141-151.	3.1	89
18	Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer. Oncotarget, 2015, 6, 40575-40587.	1.8	70

#	Article	IF	CITATIONS
19	SNAIL vs vitamin D receptor expression in colon cancer: therapeutics implications. British Journal of Cancer, 2005, 92, 985-989.	6.4	67
20	Vitamin D differentially regulates colon stem cells in patientâ€derived normal and tumor organoids. FEBS Journal, 2020, 287, 53-72.	4.7	67
21	SPROUTY-2 and E-cadherin regulate reciprocally and dictate colon cancer cell tumourigenicity. Oncogene, 2010, 29, 4800-4813.	5.9	63
22	SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene, 2009, 28, 4375-4385.	5.9	61
23	Differential distribution and enrichment of non-coding RNAs in exosomes from normal and Cancer-associated fibroblasts in colorectal cancer. Molecular Cancer, 2018, 17, 114.	19.2	61
24	Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen $\hat{l}\pm 1$ (VI). Oncogene, 2016, 35, 5224-5236.	5.9	58
25	TWIST1 Is Expressed in Colorectal Carcinomas and Predicts Patient Survival. PLoS ONE, 2011, 6, e18023.	2.5	55
26	Effects of 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Anticancer Research, 2006, 26, 2669-81.	1.1	51
27	The transcription factors Snail1 and Snail2 repress vitamin D receptor during colon cancer progression. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 106-109.	2.5	49
28	Interaction of vitamin D with membrane-based signaling pathways. Frontiers in Physiology, 2014, 5, 60.	2.8	44
29	Vitamin D and the Epithelial to Mesenchymal Transition. Stem Cells International, 2016, 2016, 1-11.	2.5	42
30	Vitamin D Effects on Cell Differentiation and Stemness in Cancer. Cancers, 2020, 12, 2413.	3.7	41
31	Vitamin D: Proteases, protease inhibitors and cancer. Cell Cycle, 2010, 9, 32-37.	2.6	37
32	Proteomic analysis of $1\hat{1}_{\pm}$,25-Dihydroxyvitamin D3 action on human colon cancer cells reveals a link to splicing regulation. Journal of Proteomics, 2011, 75, 384-397.	2.4	37
33	Protumorigenic effects of Snailâ€expression fibroblasts on colon cancer cells. International Journal of Cancer, 2014, 134, 2984-2990.	5.1	36
34	Site-Dependent E-Cadherin Cleavage and Nuclear Translocation in a Metastatic Colorectal Cancer Model. American Journal of Pathology, 2010, 177, 2067-2079.	3.8	35
35	Novel Snail1 Target Proteins in Human Colon Cancer Identified by Proteomic Analysis. PLoS ONE, 2010, 5, e10221.	2.5	29
36	The human <i>PKP2</i> /plakophilinâ€2 gene is induced by Wnt/βâ€catenin in normal and colon cancerâ€associated fibroblasts. International Journal of Cancer, 2018, 142, 792-804.	5.1	26

#	Article	IF	CITATIONS
37	Organoids and Colorectal Cancer. Cancers, 2021, 13, 2657.	3.7	26
38	The First Locked Side-Chain Analogues of Calcitriol ($\hat{11}\pm,25$ -Dihydroxyvitamin D3) Induce Vitamin D Receptor Transcriptional Activity. Organic Letters, 2003, 5, 4033-4036.	4.6	25
39	Endothelial cell activation on 3D-matrices derived from PDGF-BB-stimulated fibroblasts is mediated by Snail1. Oncogenesis, 2018, 7, 76.	4.9	25
40	Vitamin D and Wnt3A have additive and partially overlapping modulatory effects on gene expression and phenotype in human colon fibroblasts. Scientific Reports, 2019, 9, 8085.	3.3	23
41	Wnt and Vitamin D at the Crossroads in Solid Cancer. Cancers, 2020, 12, 3434.	3.7	21
42	Calcitriol (1,25-dihydroxyvitamin D3) increases L-type calcium current via protein kinase A signaling and modulates calcium cycling and contractility in isolated mouse ventricular myocytes. Heart Rhythm, 2017, 14, 432-439.	0.7	19
43	Synthesis and Biological Evaluation of $1\hat{l}\pm,25$ -Dihydroxyvitamin D ₃ Analogues with a Long Side Chain at C12 and Short C17 Side Chains. Journal of Medicinal Chemistry, 2012, 55, 8642-8656.	6.4	18
44	The effects of 1,25-dihydroxyvitamin D3 on colon cancer cells depend on RhoA-ROCK-p38MAPK-MSK signaling. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 355-361.	2.5	16
45	Synthesis, Structure, and Biological Activity of desâ€Side Chain Analogues of 11±,25â€Dihydroxyvitaminâ€D ₃ with Substituents at C18. ChemMedChem, 2011, 6, 788-793.	3.2	12
46	Calcitriol, the Bioactive Metabolite of Vitamin D, Increases Ventricular K+ Currents in Isolated Mouse Cardiomyocytes. Frontiers in Physiology, 2018, 9, 1186.	2.8	10
47	Vitamin D and Colon Cancer. , 2018, , 837-862.		6
48	Mechanisms of Resistance to Vitamin D Action in Human Cancer Cells. , 2010, , 325-334.		4
49	Vitamin D and Wnt/β-Catenin Signaling. , 2011, , 235-250.		1
50	Wnt Pathway at a Glance: From the Deep of the Crypts to the Current Ways of Targeting. , 2014, , 85-106.		1