
Jean-Philippe Tessonnier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1933603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioenabled Platform to Access Polyamides with Built-In Target Properties. Journal of the American Chemical Society, 2022, 144, 9548-9553.	13.7	7
2	Hydrogenation/Hydrodeoxygenation Selectivity Modulation by Cometal Addition to Palladium on Carbon-Coated Supports. ACS Sustainable Chemistry and Engineering, 2022, 10, 7759-7771.	6.7	4
3	Oxygen-Doped Carbon Supports Modulate the Hydrogenation Activity of Palladium Nanoparticles through Electronic Metal–Support Interactions. ACS Catalysis, 2022, 12, 7344-7356.	11.2	22
4	Bottom-Up Synthesis Strategies Enabling the Investigation of Metal Catalyst-Carbon Support Interactions. Journal of Carbon Research, 2022, 8, 37.	2.7	0
5	Comparative study of the solvolytic deconstruction of corn stover lignin in batch and flow-through reactors. Green Chemistry, 2021, 23, 7731-7742.	9.0	17
6	Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review. ACS Catalysis, 2021, 11, 5248-5270.	11.2	86
7	SiO2/SiC supports with tailored thermal conductivity to reveal the effect of surface temperature on Ru-catalyzed CO2 methanation. Applied Catalysis B: Environmental, 2021, 286, 119904.	20.2	16
8	Cathodic Corrosion of Metal Electrodes—How to Prevent It in Electroorganic Synthesis. Chemical Reviews, 2021, 121, 10241-10270.	47.7	83
9	Analysis of the Amorphous and Interphase Influence of Comononomer Loading on Polymer Properties toward Forwarding Bioadvantaged Copolyamides. Macromolecules, 2021, 54, 7910-7924.	4.8	11
10	Electrochemical hydrogenation of bioprivileged <i>cis</i> , <i>cis</i> -muconic acid to <i>trans</i> -3-hexenedioic acid: from lab synthesis to bench-scale production and beyond. Green Chemistry, 2021, 23, 6456-6468.	9.0	15
11	Comparative investigation of homogeneous and heterogeneous BrÃ,nsted base catalysts for the isomerization of glucose to fructose in aqueous media. Applied Catalysis B: Environmental, 2020, 261, 118126.	20.2	52
12	Solvent-driven isomerization of <i>cis</i> , <i>cis</i> -muconic acid for the production of specialty and performance-advantaged cyclic biobased monomers. Green Chemistry, 2020, 22, 6444-6454.	9.0	17
13	Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6990-7001.	6.7	63
14	Engineered Nitrogen-Decorated Carbon Networks for the Metal-Free Catalytic Isomerization of Glucose to Fructose. ACS Sustainable Chemistry and Engineering, 2019, 7, 16959-16963.	6.7	12
15	Bioadvantaged Nylon from Renewable Muconic Acid: Synthesis, Characterization, and Properties. ACS Symposium Series, 2018, , 355-367.	0.5	6
16	Selective Glucose Isomerization to Fructose via a Nitrogen-doped Solid Base Catalyst Derived from Spent Coffee Grounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 16113-16120.	6.7	86
17	cis,cis-Muconic acid isomerization and catalytic conversion to biobased cyclic-C ₆ -1,4-diacid monomers. Green Chemistry, 2017, 19, 3042-3050.	9.0	55
18	Decoupling the Role of External Mass Transfer and Intracrystalline Pore Diffusion on the Selectivity of HZSM-5 for the Catalytic Fast Pyrolysis of Biomass. ACS Sustainable Chemistry and Engineering, 2017, 5, 8766-8776.	6.7	27

#	Article	IF	CITATIONS
19	A new selective route towards benzoic acid and derivatives from biomass-derived coumalic acid. Green Chemistry, 2017, 19, 4879-4888.	9.0	26
20	Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates. Journal of the American Chemical Society, 2017, 139, 14120-14128.	13.7	212
21	Interfacial charge distributions in carbon-supported palladium catalysts. Nature Communications, 2017, 8, 340.	12.8	145
22	Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis. Applied Catalysis A: General, 2017, 529, 68-78.	4.3	105
23	Mesoporous ZSM-5 Zeolites in Acid Catalysis: Top-Down vs. Bottom-Up Approach. Catalysts, 2017, 7, 225.	3.5	22
24	Nitrogen-Doped Carbon Composites as Metal-Free Catalysts. , 2016, , 273-311.		0
25	Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar. Angewandte Chemie - International Edition, 2016, 55, 2368-2373.	13.8	112
26	Titelbild: Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar (Angew. Chem. 7/2016). Angewandte Chemie, 2016, 128, 2317-2317.	2.0	1
27	Comments on "Thermodynamics of cis,cis-muconic acid solubility in various polar solvents at low temperature range― Journal of Molecular Liquids, 2016, 224, 420-422.	4.9	5
28	Electrochemical Conversion of Biologically Produced Muconic Acid: Key Considerations for Scale-Up and Corresponding Technoeconomic Analysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 7098-7109.	6.7	45
29	Thermal Stability of Aluminum-Rich ZSM-5 Zeolites and Consequences on Aromatization Reactions. Journal of Physical Chemistry C, 2016, 120, 20103-20113.	3.1	53
30	Electrochemical Conversion of Muconic Acid to Biobased Diacid Monomers. ACS Sustainable Chemistry and Engineering, 2016, 4, 3575-3585.	6.7	81
31	Tailoring ZSMâ€5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons. ChemSusChem, 2016, 9, 1473-1482.	6.8	60
32	Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar. Angewandte Chemie, 2016, 128, 2414-2419.	2.0	24
33	Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites. Green Chemistry, 2016, 18, 2231-2239.	9.0	43
34	Kinetics, Reaction Orders, Rate Laws, and Their Relation to Mechanisms: A Hands-On Introduction for High School Students Using Portable Spectrophotometry. Journal of Chemical Education, 2016, 93, 172-174.	2.3	8
35	Insights into the Hydrothermal Stability of ZSM-5 under Relevant Biomass Conversion Reaction Conditions. ACS Catalysis, 2015, 5, 4418-4422.	11.2	72
36	Kinetic and Mechanistic Study of Clucose Isomerization Using Homogeneous Organic BrÃ,nsted Base Catalysts in Water. ACS Catalysis, 2015, 5, 3162-3173.	11.2	144

#	Article	IF	CITATIONS
37	Characterizing Graphitic Carbon with Xâ€ray Photoelectron Spectroscopy: A Stepâ€byâ€Step Approach. ChemCatChem, 2015, 7, 2871-2881.	3.7	174
38	Gas sensing properties and p-type response of ALD TiO ₂ coated carbon nanotubes. Nanotechnology, 2015, 26, 024004.	2.6	39
39	Selective Base-Catalyzed Isomerization of Glucose to Fructose. ACS Catalysis, 2014, 4, 4295-4298.	11.2	150
40	Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase. Chinese Journal of Catalysis, 2014, 35, 842-855.	14.0	26
41	Structure, Stability, and Electronic Interactions of Polyoxometalates on Functionalized Graphene Sheets. Langmuir, 2013, 29, 393-402.	3.5	104
42	Synthesis and characterization of vanadium species coated on alumina, magnesium oxide and hydrotalcite supports to SOx removal. Applied Catalysis A: General, 2013, 462-463, 46-55.	4.3	10
43	Polyoxometalate Clusters Supported on Functionalized Graphene Sheets as Nanohybrids for the Catalytic Combustion of Liquid Fuels. Materials Research Society Symposia Proceedings, 2012, 1451, 137-143.	0.1	5
44	Labeling and monitoring the distribution of anchoring sites on functionalized CNTs by atomic layer deposition. Journal of Materials Chemistry, 2012, 22, 7323.	6.7	44
45	MOx/CNTs Hetero-Structures for Gas Sensing Applications: Role of CNTs Defects. Procedia Engineering, 2012, 47, 1259-1262.	1.2	4
46	Dispersion of Alkyl-Chain-Functionalized Reduced Graphene Oxide Sheets in Nonpolar Solvents. Langmuir, 2012, 28, 6691-6697.	3.5	67
47	Nanostructured Manganese Oxide Supported on Carbon Nanotubes for Electrocatalytic Water Splitting. ChemCatChem, 2012, 4, 851-862.	3.7	141
48	New Insights from Microcalorimetry on the FeOx/CNT-Based Electrocatalysts Active in the Conversion of CO2 to Fuels. ChemSusChem, 2012, 5, 577-586.	6.8	49
49	Palladium catalysts supported on N-functionalized hollow vapor-grown carbon nanofibers: The effect of the basic support and catalyst reduction temperature. Applied Catalysis A: General, 2011, 408, 137-147.	4.3	12
50	Optimizing the synthesis of cobalt-based catalysts for the selective growth of multiwalled carbon nanotubes under industrially relevant conditions. Carbon, 2011, 49, 5253-5264.	10.3	41
51	Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review. ChemSusChem, 2011, 4, 824-847.	6.8	331
52	Dissolved Carbon Controls the Initial Stages of Nanocarbon Growth. Angewandte Chemie - International Edition, 2011, 50, 3313-3317.	13.8	117
53	Spinelâ€Type Cobalt–Manganeseâ€Based Mixed Oxide as Sacrificial Catalyst for the Highâ€Yield Production of Homogeneous Carbon Nanotubes. ChemCatChem, 2010, 2, 1559-1561.	3.7	60
54	Active coke: Carbonaceous materials as catalysts for alkane dehydrogenation. Journal of Catalysis, 2010, 269, 329-339.	6.2	74

JEAN-PHILIPPE TESSONNIER

#	Article	IF	CITATIONS
55	Structure and properties of a Mo oxide catalyst supported on hollow carbon nanofibers in selective propene oxidation. Journal of Catalysis, 2010, 271, 305-314.	6.2	28
56	Transesterification of Triglycerides Using Nitrogenâ€Functionalized Carbon Nanotubes. ChemSusChem, 2010, 3, 241-245.	6.8	53
57	The effect of alumina on FCC catalyst in the presence of nickel and vanadium. Applied Catalysis A: General, 2010, 388, 15-21.	4.3	28
58	Synthesis of zeolite crystals with unusual morphology: Application in acid catalysis. Applied Catalysis A: General, 2010, 390, 102-109.	4.3	39
59	Influence of the microstructure of carbon nanotubes on the oxidative dehydrogenation of ethylbenzene to styrene. Catalysis Today, 2010, 150, 49-54.	4.4	46
60	Effect of the carbon nanotube basicity in Pd/N-CNT catalysts on the synthesis of R-1-phenyl ethyl acetate. Studies in Surface Science and Catalysis, 2010, , 283-287.	1.5	3
61	Untangling the electronic properties in highly similar multi-walled carbon nanotubes by terahertz spectroscopy. , 2009, , .		1
62	The Use of Terahertz Spectroscopy as a Sensitive Probe in Discriminating the Electronic Properties of Structurally Similar Multiâ€Walled Carbon Nanotubes. Advanced Materials, 2009, 21, 3953-3957.	21.0	32
63	Defectâ€Mediated Functionalization of Carbon Nanotubes as a Route to Design Single‣ite Basic Heterogeneous Catalysts for Biomass Conversion. Angewandte Chemie - International Edition, 2009, 48, 6543-6546.	13.8	116
64	Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates. Catalysis Today, 2009, 143, 57-63.	4.4	107
65	The role of mechanically induced defects in carbon nanotubes to modify the properties of electrodes for PEM fuel cell. Catalysis Today, 2009, 147, 287-299.	4.4	43
66	Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon, 2009, 47, 1779-1798.	10.3	311
67	Selective Deposition of Metal Nanoparticles Inside or Outside Multiwalled Carbon Nanotubes. ACS Nano, 2009, 3, 2081-2089.	14.6	175
68	Design of MFI Zeolite-Based Composites with Hierarchical Pore Structure: A New Generation of Structured Catalysts. Crystal Growth and Design, 2009, 9, 3721-3729.	3.0	47
69	Understanding the Dielectric Properties of Heat-Treated Carbon Nanofibers at Terahertz Frequencies: a New Perspective on the Catalytic Activity of Structured Carbonaceous Materials. Journal of Physical Chemistry C, 2009, 113, 10554-10559.	3.1	33
70	Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides. Chemical Communications, 2009, , 4405.	4.1	57
71	Influence of the graphitisation of hollow carbon nanofibers on their functionalisation and subsequent filling with metal nanoparticles. Chemical Communications, 2009, , 7158.	4.1	31
72	CNFs@CNTs: Superior Carbon for Electrochemical Energy Storage. Advanced Materials, 2008, 20, 1450-1455.	21.0	135

5

#	Article	IF	CITATIONS
73	Methane dehydro-aromatization on Mo/ZSM-5: About the hidden role of BrÃ,nsted acid sites. Applied Catalysis A: General, 2008, 336, 79-88.	4.3	151
74	ZSM-5 Coatings on β-SiC Monoliths:  Possible New Structured Catalyst for the Methanol-to-Olefins Process. Journal of Physical Chemistry C, 2007, 111, 4368-4374.	3.1	101
75	Green catalysis for production of chemicals and CO-free hydrogen. Catalysis Communications, 2007, 8, 1787-1792.	3.3	15
76	One-pot synthesis of Ga-SBA-15: Activity comparison with Ga-post-treated SBA-15 catalysts. Applied Catalysis A: General, 2007, 316, 219-225.	4.3	39
77	Quantitative Measurement of the Brönsted Acid Sites in Solid Acids: Toward a Single-Site Design of Mo-Modified ZSM-5 Zeolite. Journal of Physical Chemistry B, 2006, 110, 10390-10395.	2.6	100
78	Synthesis of a carbon nanotube monolith with controlled macroscopic shape. Carbon, 2006, 44, 2587-2589.	10.3	39
79	Highly dispersed iron oxide nanoclusters supported on ordered mesoporous SBA-15: A very active catalyst for Friedel–Crafts alkylations. Applied Catalysis A: General, 2006, 300, 1-7.	4.3	81
80	Ga doped SBA-15 as an active and stable catalyst for Friedel–Crafts liquid-phase acylation. Applied Catalysis A: General, 2006, 298, 194-202.	4.3	77
81	Beta zeolite supported on a β-SiC foam monolith: A diffusionless catalyst for fixed-bed Friedel–Crafts reactions. Journal of Molecular Catalysis A, 2006, 248, 113-120.	4.8	40
82	Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Applied Catalysis A: General, 2005, 288, 203-210.	4.3	258
83	BETA zeolite nanowire synthesis under non-hydrothermal conditions using carbon nanotubes as template. Carbon, 2004, 42, 1941-1946.	10.3	27
84	Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. Applied Catalysis A: General, 2003, 254, 345-363.	4.3	117
85	Beta zeolite supported on silicon carbide for Friedel–Crafts fixed-bed reactionsElectronic supplementary information (ESI) available: Temperature-pressure oxidation spectra and mechanism of phenyl benzoate formation without the participation of phenol. See http://www.rsc.org/suppdata/cc/b2/b209858i/. Chemical Communications, 2003., 530-531.	4.1	15
86	Synthesis and catalytic uses of carbon and silicon carbide nanostructures. Catalysis Today, 2002, 76, 11-32.	4.4	138
87	Carbon nanotubes: a highly selective support for the C=C bond hydrogenation reaction. Studies in Surface Science and Catalysis, 2000, 143, 697-704.	1.5	14
88	Tin Dioxide–Carbon Heterostructures Applied to Gas Sensing: Structure-Dependent Properties and General Sensing Mechanism. Journal of Physical Chemistry C, 0, , 130916143757006.	3.1	14