
Brett M Morrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/193274/publications.pdf Version: 2024-02-01

REFTT M MORPISON

#	Article	IF	CITATIONS
1	MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degeneration. Cell Reports, 2021, 34, 108610.	6.4	65
2	Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature, 2021, 591, 645-651.	27.8	492
3	Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	29
4	Metabolic Transporters in the Peripheral Nerve—What, Where, and Why?. Neurotherapeutics, 2021, 18, 2185-2199.	4.4	5
5	Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging. Glia, 2020, 68, 161-177.	4.9	46
6	Absence of Survival and Motor Deficits in 500 Repeat C9ORF72 BAC Mice. Neuron, 2020, 108, 775-783.e4.	8.1	33
7	Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy. Experimental Neurology, 2020, 333, 113415.	4.1	11
8	Lactate Transporters Mediate Glia-Neuron Metabolic Crosstalk in Homeostasis and Disease. Frontiers in Cellular Neuroscience, 2020, 14, 589582.	3.7	35
9	Surprising New Players in Glia-Neuron Crosstalk: Role in CNS Regeneration. Cell Metabolism, 2020, 32, 695-696.	16.2	1
10	Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters. Experimental Neurology, 2018, 309, 23-31.	4.1	123
11	Neuromuscular Diseases. Seminars in Neurology, 2016, 36, 409-418.	1.4	59
12	Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS–FTD-linked <i>UBQLN2</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7580-E7589.	7.1	77
13	Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush. Experimental Neurology, 2015, 263, 325-338.	4.1	71
14	Oligodendroglia: metabolic supporters of axons. Trends in Cell Biology, 2013, 23, 644-651.	7.9	196
15	Amyotrophic Lateral Sclerosis and Novel Therapeutic Strategies. Neurology Research International, 2012, 2012, 1-3.	1.3	2
16	Medication, Toxic, and Vitamin-Related Neuropathies. CONTINUUM Lifelong Learning in Neurology, 2012, 18, 139-160.	0.8	5
17	Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012, 487, 443-448.	27.8	1,287
18	Expanding the spectrum of monoclonal light chain deposition disease in muscle. Muscle and Nerve, 2012, 45, 755-761.	2.2	15

BRETT M MORRISON

#	Article	IF	CITATIONS
19	Approach to the Patient with Abnormal Cerebrospinal Fluid Glucose Content. , 2009, , 281-285.		0
20	A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Experimental Neurology, 2009, 217, 258-268.	4.1	75
21	Magnetic resonance imaging of mouse skeletal muscle to measure denervation atrophy. Experimental Neurology, 2008, 212, 448-457.	4.1	58
22	Genetically Decreased Spinal Cord Copper Concentration Prolongs Life in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2004, 24, 7945-7950.	3.6	50
23	Early and Selective Pathology of Light Chain Neurofilament in the Spinal Cord and Sciatic Nerve of G86R Mutant Superoxide Dismutase Transgenic Mice. Experimental Neurology, 2000, 165, 207-220.	4.1	27
24	Amyotrophic lateral sclerosis associated with mutations in superoxide dismutase: a putative mechanism of degeneration. Brain Research Reviews, 1999, 29, 121-135.	9.0	78
25	Time course of neuropathology in the spinal cord of G86R superoxide dismutase transgenic mice. Journal of Comparative Neurology, 1998, 391, 64-77.	1.6	91
26	Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice. , 1998, 395, 523-534.		57
27	Superoxide dismutase and neurofilament transgenic models of amyotrophic lateral sclerosis. The Journal of Experimental Zoology, 1998, 282, 32-47.	1.4	23
28	Quantitative immunocytochemical analysis of the spinal cord in G86R superoxide dismutase transgenic mice: Neurochemical correlates of selective vulnerability. , 1996, 373, 619-631.		83