Wenxiong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1932333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 2012, 421-422, 3-16.	3.9	663
2	Interactions of trace metals and different marine food chains. Marine Ecology - Progress Series, 2002, 243, 295-309.	0.9	438
3	Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Marine Ecology - Progress Series, 1996, 140, 91-113.	0.9	353
4	Assimilation efficiencies of chemical contaminants in aquatic invertebrates: A synthesis. Environmental Toxicology and Chemistry, 1999, 18, 2034-2045.	2.2	331
5	Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach. Science of the Total Environment, 1998, 219, 117-135.	3.9	317
6	Delineating metal accumulation pathways for marine invertebrates. Science of the Total Environment, 1999, 237-238, 459-472.	3.9	238
7	Assimilation of trace elements and carbon by the mussel <i>Mytilus edulis</i> : Effects of food composition. Limnology and Oceanography, 1996, 41, 197-207.	1.6	202
8	Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2011, 30, 885-892.	2.2	200
9	Accumulation of trace elements in a marine copepod. Limnology and Oceanography, 1998, 43, 273-283.	1.6	175
10	Biokinetic Uptake and Efflux of Silver Nanoparticles in <i>Daphnia magna</i> . Environmental Science & Technology, 2010, 44, 7699-7704.	4.6	154
11	The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China. Marine Pollution Bulletin, 2010, 60, 1364-1371.	2.3	147
12	Uptake and Elimination Routes of Inorganic Mercury and Methylmercury inDaphnia magna. Environmental Science & Technology, 2004, 38, 808-816.	4.6	145
13	Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. Journal of Hazardous Materials, 2011, 190, 631-638.	6.5	145
14	Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food and Chemical Toxicology, 2008, 46, 2010-2022.	1.8	144
15	Accumulation and Retention of Metals in Mussels from Food and Water:Â A Comparison under Field and Laboratory Conditions. Environmental Science & Technology, 1996, 30, 3232-3242.	4.6	142
16	Subcellular Partitioning and the Prediction of Cadmium Toxicity to Aquatic Organisms. Environmental Chemistry, 2006, 3, 395.	0.7	139
17	Importance of surface coatings and soluble silver in silver nanoparticles toxicity to <i>Daphnia magna</i> . Nanotoxicology, 2012, 6, 361-370.	1.6	135
18	Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus. Marine Ecology - Progress Series, 2003, 261, 257-268.	0.9	134

#	Article	IF	CITATIONS
19	COMPARISON OF Cd, Cu, AND Zn TOXIC EFFECTS ON FOUR MARINE PHYTOPLANKTON BY PULSE-AMPLITUDE-MODULATED FLUOROMETRY. Environmental Toxicology and Chemistry, 2005, 24, 2603.	2.2	133
20	Assimilation of trace elements ingested by the mussel Mytilus edulis:effects of algal food abundance. Marine Ecology - Progress Series, 1995, 129, 165-176.	0.9	131
21	Bioavailability of Cr(III) and Cr(VI) to Marine Mussels from Solute and Particulate Pathways. Environmental Science & Technology, 1997, 31, 603-611.	4.6	130
22	Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates. Ecotoxicology and Environmental Safety, 2005, 61, 145-159.	2.9	130
23	Copper and zinc contamination in oysters: Subcellular distribution and detoxification. Environmental Toxicology and Chemistry, 2011, 30, 1767-1774.	2.2	122
24	Comparative approaches to understand metal bioaccumulation in aquatic animals. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2008, 148, 315-323.	1.3	121
25	Copepod grazing and the biogeochemical fate of diatom iron. Limnology and Oceanography, 1995, 40, 989-994.	1.6	119
26	Bioaccumulation of Cd, Se, and Zn in an estuarine oyster (Crassostrea rivularis) and a coastal oyster (Saccostrea glomerata). Aquatic Toxicology, 2001, 56, 33-51.	1.9	118
27	NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis. Aquatic Toxicology, 2010, 100, 339-345.	1.9	118
28	Role of Titanium Dioxide Nanoparticles in the Elevated Uptake and Retention of Cadmium and Zinc in <i>Daphnia magna</i> . Environmental Science & Technology, 2012, 46, 469-476.	4.6	116
29	Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 2001, 111, 233-240.	3.7	115
30	Trace elements in two marine fish cultured in fish cages in Fujian province, China. Environmental Pollution, 2010, 158, 1334-1342.	3.7	113
31	Size-Dependent Uptake of Silver Nanoparticles in Daphnia magna. Environmental Science & Technology, 2012, 46, 11345-11351.	4.6	107
32	Identifying the Sources and Processes of Mercury in Subtropical Estuarine and Ocean Sediments Using Hg Isotopic Composition. Environmental Science & Technology, 2015, 49, 1347-1355.	4.6	107
33	Kinetic measurements of metal accumulation in two marine macroalgae. Marine Biology, 1999, 135, 11-23.	0.7	99
34	Uptake and Efflux of Cd and Zn by the Green MusselPerna viridisafter Metal Preexposure. Environmental Science & Technology, 2002, 36, 989-995.	4.6	99
35	Effects of Cooking and Subcellular Distribution on the Bioaccessibility of Trace Elements in Two Marine Fish Species. Journal of Agricultural and Food Chemistry, 2010, 58, 3517-3523.	2.4	99
36	Antagonistic Interaction of Mercury and Selenium in a Marine Fish Is Dependent on Their Chemical Species. Environmental Science & Species, Environmental Science & Species, 2011, 45, 3116-3122.	4.6	99

#	Article	IF	CITATIONS
37	Biodynamics To Explain the Difference of Copper Body Concentrations in Five Marine Bivalve Species. Environmental Science & Technology, 2009, 43, 2137-2143.	4.6	96
38	Comparison of metal uptake rate and absorption efficiency in marine bivalves. Environmental Toxicology and Chemistry, 2001, 20, 1367-1373.	2.2	94
39	Why mercury concentration increases with fish size? Biokinetic explanation. Environmental Pollution, 2012, 163, 192-198.	3.7	94
40	Significance of subcellular metal distribution in prey in influencing the trophic transfer of metals in a marine fish. Limnology and Oceanography, 2006, 51, 2008-2017.	1.6	91
41	SIZE-DEPENDENCE OF THE POTENTIAL FOR METAL BIOMAGNIFICATION IN EARLY LIFE STAGES OF MARINE FISH. Environmental Toxicology and Chemistry, 2007, 26, 787.	2.2	89
42	Marine diatom uptake of iron bound with natural colloids of different origins. Marine Chemistry, 2003, 81, 177-189.	0.9	86
43	Understanding the Differences in Cd and Zn Bioaccumulation and Subcellular Storage among Different Populations of Marine Clams. Environmental Science & Technology, 2004, 38, 449-456.	4.6	85
44	Oyster-based national mapping of trace metals pollution in the Chinese coastal waters. Environmental Pollution, 2017, 224, 658-669.	3.7	84
45	Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environmental Pollution, 2018, 232, 375-384.	3.7	83
46	Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters. Environmental Pollution, 2019, 244, 190-201.	3.7	82
47	Assimilation of cadmium, chromium, and zinc by the green mussel <i>Perna viridis</i> and the clam <i>Ruditapes philippinarum</i> . Environmental Toxicology and Chemistry, 2000, 19, 1660-1667.	2.2	81
48	BIOKINETICS AND TOLERANCE DEVELOPMENT OF TOXIC METALS IN DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 2007, 26, 1023.	2.2	81
49	Metal accumulation in the green macroalga Ulva fasciata: effects of nitrate, ammonium and phosphate. Science of the Total Environment, 2001, 278, 11-22.	3.9	80
50	Effects of toxic dinoflagellate Alexandrium tamarense on the energy budgets and growth of two marine bivalves. Marine Environmental Research, 2002, 53, 145-160.	1.1	80
51	Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Chemosphere, 2004, 57, 839-851.	4.2	78
52	Trace metal assimilation and release budget in <i>Daphnia magna</i> . Limnology and Oceanography, 2002, 47, 495-504.	1.6	77
53	Assimilation and regeneration of trace elements by marine copepods. Limnology and Oceanography, 1996, 41, 70-81.	1.6	75
54	Cadmium toxicity to two marine phytoplankton under different nutrient conditions. Aquatic Toxicology, 2006, 78, 114-126.	1.9	75

#	Article	IF	CITATIONS
55	Visualization of Biogenic Amines and In Vivo Ratiometric Mapping of Intestinal pH by AlEâ€Active Polyheterocycles Synthesized by Metalâ€Free Multicomponent Polymerizations. Advanced Functional Materials, 2019, 29, 1902240.	7.8	75
56	Metal Bioaccumulation in Aquatic Species: Quantification of Uptake and Elimination Rate Constants Using Physicochemical Properties of Metals and Physiological Characteristics of Species. Environmental Science & Technology, 2008, 42, 852-858.	4.6	74
57	In Vivo Mercury Demethylation in a Marine Fish (<i>Acanthopagrus schlegeli</i>). Environmental Science & Technology, 2017, 51, 6441-6451.	4.6	74
58	The uptake, distribution and elimination of paralytic shellfish toxins in mussels and fish exposed to to to toxic dinoflagellates. Aquatic Toxicology, 2006, 80, 82-91.	1.9	73
59	Trophically available metal $\hat{a} \in A$ variable feast. Environmental Pollution, 2011, 159, 2347-2349.	3.7	73
60	Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure. Journal of Hazardous Materials, 2012, 221-222, 162-169.	6.5	73
61	Cd and Zn Uptake Kinetics inDaphnia magnain Relation to Cd Exposure History. Environmental Science & Technology, 2004, 38, 6051-6058.	4.6	72
62	In Vivo Mercury Methylation and Demethylation in Freshwater Tilapia Quantified by Mercury Stable Isotopes. Environmental Science & Technology, 2013, 47, 7949-7957.	4.6	72
63	Biodynamic understanding of mercury accumulation in marine and freshwater fish. Advances in Environmental Research, 2012, 1, 15-35.	0.3	72
64	Cadmium in three marine phytoplankton: Accumulation, subcellular fate and thiol induction. Aquatic Toxicology, 2009, 95, 99-107.	1.9	71
65	Large-scale spatial and interspecies differences in trace elements and stable isotopes in marine wild fish from Chinese waters. Journal of Hazardous Materials, 2012, 215-216, 65-74.	6.5	71
66	The transfer of cadmium, mercury, methylmercury, and zinc in an intertidal rocky shore food chain. Journal of Experimental Marine Biology and Ecology, 2004, 307, 91-110.	0.7	70
67	DIETARY ASSIMILATION AND ELIMINATION OF Cd, Se, AND Zn BY DAPHNIA MAGNA AT DIFFERENT METAL CONCENTRATIONS. Environmental Toxicology and Chemistry, 2004, 23, 2689.	2.2	70
68	Mercury exposure in the freshwater tilapia Oreochromis niloticus. Environmental Pollution, 2010, 158, 2694-2701.	3.7	70
69	Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. Marine Pollution Bulletin, 2011, 62, 1140-1146.	2.3	70
70	Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton. Environmental Pollution, 2011, 159, 3097-3105.	3.7	70
71	Variations of trace metals in two estuarine environments with contrasting pollution histories. Science of the Total Environment, 2014, 485-486, 604-614.	3.9	70
72	Influences of Natural Colloids on Metal Bioavailability to Two Marine Bivalves. Environmental Science & Technology, 2000, 34, 4571-4576.	4.6	69

#	Article	IF	CITATIONS
73	Comparison of metal accumulation in mussels at different local and global scales. Environmental Toxicology and Chemistry, 2003, 22, 388-395.	2.2	68
74	Influence of glyphosate and its formulation (Roundup®) on the toxicity and bioavailability of metals to Ceriodaphnia dubia. Environmental Pollution, 2005, 138, 59-68.	3.7	68
75	Analyzing biomagnification of metals in different marine food webs using nitrogen isotopes. Marine Pollution Bulletin, 2008, 56, 2082-2088.	2.3	68
76	Bioavailability of natural colloidâ€bound iron to marine plankton: Influences of colloidal size and aging. Limnology and Oceanography, 2001, 46, 1956-1967.	1.6	67
77	Kinetic uptake of bioavailable cadmium, selenium, and zinc by <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2002, 21, 2348-2355.	2.2	67
78	Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii. Environmental Pollution, 2006, 142, 303-312.	3.7	66
79	Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environmental Pollution, 2014, 186, 36-42.	3.7	66
80	Low Bioavailability of Silver Nanoparticles Presents Trophic Toxicity to Marine Medaka (<i>Oryzias) Tj ETQq0 0 (</i>	Ͻ rgβT /Ον 4.6	erlock 10 Tf 50
81	Effects of Zn pre-exposure on Cd and Zn bioaccumulation and metallothionein levels in two species of marine fish. Aquatic Toxicology, 2005, 73, 353-369.	1.9	65
82	The subcellular fate of cadmium and zinc in the scallop Chlamys nobilis during waterborne and dietary metal exposure. Aquatic Toxicology, 2008, 90, 253-260.	1.9	65
83	Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China. Marine Pollution Bulletin, 2002, 44, 820-826.	2.3	63
84	Phase partitioning and solubility of iron in natural seawater controlled by dissolved organic matter. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	63
85	Reducing total mercury and methylmercury accumulation in rice grains through water management and deliberate selection of rice cultivars. Environmental Pollution, 2012, 162, 202-208.	3.7	63
86	Bioavailability of Inorganic and Methylmercury to a Marine Deposit-Feeding Polychaete. Environmental Science & Technology, 1998, 32, 2564-2571.	4.6	62
87	Geochemistry of Cd, Cr, and Zn in Highly Contaminated Sediments and Its Influences on Assimilation by Marine Bivalves. Environmental Science & Technology, 2002, 36, 5164-5171.	4.6	62
88	Physiologically Based Pharmacokinetic Model for Inorganic and Methylmercury in a Marine Fish. Environmental Science & Technology, 2015, 49, 10173-10181.	4.6	62
89	Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet. Aquatic Toxicology, 2009, 95, 248-255.	1.9	61
90	The influence of mariculture on mercury distribution in sediments and fish around Hong Kong and adjacent mainland China waters. Chemosphere, 2011, 82, 1038-1043.	4.2	61

#	Article	IF	CITATIONS
91	Mercury in Wild Fish from High-Altitude Aquatic Ecosystems in the Tibetan Plateau. Environmental Science & Technology, 2014, 48, 5220-5228.	4.6	61
92	Bioaccumulation and Trophic Transfer of Selenium. , 2010, , 93-139.		61
93	Inter-population differences in Cd, Cr, Se, and Zn accumulation by the green mussel Perna viridis acclimated at different salinities. Aquatic Toxicology, 2003, 62, 205-218.	1.9	60
94	Cadmium Toxicity in a Marine Diatom as Predicted by the Cellular Metal Sensitive Fraction. Environmental Science & Technology, 2008, 42, 940-946.	4.6	60
95	Controls of Dissolved Organic Matter and Chloride on Mercury Uptake by a Marine Diatom. Environmental Science & Technology, 2009, 43, 8998-9003.	4.6	60
96	Effects of calcium and metabolic inhibitors on trace element uptake in two marine bivalves. Journal of Experimental Marine Biology and Ecology, 1999, 236, 149-164.	0.7	59
97	Multigenerational cadmium acclimation and biokinetics in Daphnia magna. Environmental Pollution, 2006, 141, 343-352.	3.7	58
98	Bioaccessibility of 12 trace elements in marine molluscs. Food and Chemical Toxicology, 2013, 55, 627-636.	1.8	58
99	Mercury distribution, speciation and bioavailability in sediments from the Pearl River Estuary, Southern China. Marine Pollution Bulletin, 2012, 64, 1699-1704.	2.3	57
100	Metal uptake in a coastal diatom influenced by major nutrients (N, P, and Si). Water Research, 2001, 35, 315-321.	5.3	56
101	Metal pollution in a contaminated bay: Relationship between metal geochemical fractionation in sediments and accumulation in a polychaete. Environmental Pollution, 2014, 191, 50-57.	3.7	56
102	Characterization of Bacillus subtilis from gastrointestinal tract of hybrid Hulong grouper (Epinephelus fuscoguttatus × E. lanceolatus) and its effects as probiotic additives. Fish and Shellfish Immunology, 2019, 84, 1115-1124.	1.6	56
103	DYNAMICS OF METAL SUBCELLULAR DISTRIBUTION AND ITS RELATIONSHIP WITH METAL UPTAKE IN MARINE MUSSELS. Environmental Toxicology and Chemistry, 2005, 24, 2365.	2.2	55
104	Acute Toxicity of Cadmium in <i>Daphnia magna</i> under Different Calcium and pH Conditions: Importance of Influx Rate. Environmental Science & Technology, 2011, 45, 1970-1976.	4.6	55
105	Mercury accumulation in marine bivalves: Influences of biodynamics and feeding niche. Environmental Pollution, 2011, 159, 2500-2506.	3.7	55
106	Waterborne cadmium and zinc uptake in a euryhaline teleost Acanthopagrus schlegeli acclimated to different salinities. Aquatic Toxicology, 2007, 84, 173-181.	1.9	54
107	Tissueâ€specific toxicological effects of cadmium in green mussels (<i>Perna viridis</i>): Nuclear magnetic resonanceâ€based metabolomics study. Environmental Toxicology and Chemistry, 2011, 30, 806-812.	2.2	54
108	Bioavailability of sediment-bound Cd, Cr and Zn to the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Journal of Experimental Marine Biology and Ecology, 2000, 255, 75-92.	0.7	53

#	Article	IF	CITATIONS
109	Comparison of Bioavailability and Biotransformation of Inorganic and Organic Arsenic to Two Marine Fish. Environmental Science & Technology, 2016, 50, 2413-2423.	4.6	53
110	Selenium induces the demethylation of mercury in marine fish. Environmental Pollution, 2017, 231, 1543-1551.	3.7	53
111	Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Scientific Reports, 2017, 7, 11716.	1.6	53
112	Dominant Role of Silver Ions in Silver Nanoparticle Toxicity to a Unicellular Alga: Evidence from Luminogen Imaging. Environmental Science & Technology, 2019, 53, 494-502.	4.6	53
113	Temperature-Dependent Sensitivity of a Marine Diatom to Cadmium Stress Explained by Subcelluar Distribution and Thiol Synthesis. Environmental Science & Technology, 2008, 42, 8603-8608.	4.6	52
114	<i>In vivo</i> monitoring of tissue regeneration using a ratiometric lysosomal AIE probe. Chemical Science, 2020, 11, 3152-3163.	3.7	52
115	Trophic transfer of heavy metals from freshwater zooplankton Daphnia magna to zebrafish Danio reiro. Water Research, 2002, 36, 4563-4569.	5.3	51
116	Acute Toxicity of Mercury to Daphnia magna under Different Conditions. Environmental Science & Technology, 2006, 40, 4025-4030.	4.6	51
117	Factors Affecting the Bioaccessibility of Methylmercury in Several Marine Fish Species. Journal of Agricultural and Food Chemistry, 2011, 59, 7155-7162.	2.4	51
118	Significance of Trophic Transfer in Predicting the High Concentration of Zinc in Barnacles. Environmental Science & Technology, 1999, 33, 2905-2909.	4.6	50
119	Reconstructing the Biokinetic Processes of Oysters to Counteract the Metal Challenges: Physiological Acclimation. Environmental Science & Technology, 2012, 46, 10765-10771.	4.6	50
120	Dietary toxicity of metals in aquatic animals: Recent studies and perspectives. Science Bulletin, 2013, 58, 203-213.	1.7	50
121	Spatial variation and subcellular binding of metals in oysters from a large estuary in China. Marine Pollution Bulletin, 2013, 70, 274-280.	2.3	50
122	Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China estuary. Science of the Total Environment, 2017, 603-604, 434-444.	3.9	50
123	Biokinetics of cadmium, selenium, and zinc in freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metal transfer to Daphnia magna. Environmental Pollution, 2004, 129, 443-456.	3.7	49
124	Cadmium and zinc uptake and toxicity in two strains of Microcystis aeruginosa predicted by metal free ion activity and intracellular concentration. Aquatic Toxicology, 2009, 91, 212-220.	1.9	49
125	Two-Compartment Toxicokinetic–Toxicodynamic Model to Predict Metal Toxicity in <i>Daphnia magna</i> . Environmental Science & Technology, 2012, 46, 9709-9715.	4.6	49
126	Intracellular speciation and transformation of inorganic mercury in marine phytoplankton. Aquatic Toxicology, 2014, 148, 122-129.	1.9	49

#	Article	IF	CITATIONS
127	<i>In Vivo</i> Bioimaging of Silver Nanoparticle Dissolution in the Gut Environment of Zooplankton. ACS Nano, 2018, 12, 12212-12223.	7.3	49
128	Subcellular controls of mercury trophic transfer to a marine fish. Aquatic Toxicology, 2010, 99, 500-506.	1.9	48
129	Trace metals in oysters: molecular and cellular mechanisms and ecotoxicological impacts. Environmental Sciences: Processes and Impacts, 2018, 20, 892-912.	1.7	48
130	Modeling Metal Bioavailability for Marine Mussels. Reviews of Environmental Contamination and Toxicology, 1997, , 39-65.	0.7	48
131	Comparison between two clones of Daphnia magna: Effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics. Aquatic Toxicology, 2006, 76, 217-229.	1.9	47
132	Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments. Environmental Pollution, 2008, 151, 222-230.	3.7	47
133	The three â€~B' of fish mercury in China: Bioaccumulation, biodynamics and biotransformation. Environmental Pollution, 2019, 250, 216-232.	3.7	47
134	Trophic transfer of silver to marine herbivores: A review of recent studies. Environmental Toxicology and Chemistry, 1998, 17, 562-571.	2.2	46
135	MATERNAL TRANSFER EFFICIENCY AND TRANSGENERATIONAL TOXICITY OF METHYLMERCURY IN DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 2004, 23, 1504.	2.2	46
136	Applications of dynamic models in predicting the bioaccumulation, transport and toxicity of trace metals in aquatic organisms. Environmental Pollution, 2019, 252, 1561-1573.	3.7	46
137	Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation. Aquatic Toxicology, 2009, 94, 238-244.	1.9	45
138	Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua. Aquatic Toxicology, 2011, 105, 582-588.	1.9	45
139	Mercury species of sediment and fish in freshwater fish ponds around the Pearl River Delta, PR China: Human health risk assessment. Chemosphere, 2011, 83, 443-448.	4.2	45
140	Bioaccumulation and Biomonitoring. , 2016, , 99-119.		45
141	Organâ€specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish. Environmental Toxicology and Chemistry, 2016, 35, 2074-2083.	2.2	45
142	Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn. Environmental Pollution, 2004, 132, 265-277.	3.7	44
143	Uptake, absorption efficiency and elimination of DDT in marine phytoplankton, copepods and fish. Environmental Pollution, 2005, 136, 453-464.	3.7	44
144	Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration. Ecotoxicology and Environmental Safety, 2014, 110, 261-268.	2.9	44

#	Article	IF	CITATIONS
145	A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis. Aquatic Toxicology, 2018, 204, 160-170.	1.9	44
146	Influences of metal concentration in phytoplankton and seawater on metal assimilation and elimination in marine copepods. Environmental Toxicology and Chemistry, 2001, 20, 1067-1077.	2.2	43
147	Influences of dissolved and colloidal organic carbon on the uptake of Ag, Cd, and Cr by the marine mussel Perna viridis. Environmental Pollution, 2004, 129, 467-477.	3.7	43
148	The influences of ambient and body calcium on cadmium and zinc accumulation in <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2008, 27, 1605-1613.	2.2	43
149	Current status and historical trends of organochlorine pesticides in the ecosystem of Deep Bay, South China. Estuarine, Coastal and Shelf Science, 2009, 85, 265-272.	0.9	43
150	Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary. Science of the Total Environment, 2016, 544, 281-290.	3.9	43
151	Metal accumulation and toxicity: The critical accumulated concentration of metabolically available zinc in an oyster model. Aquatic Toxicology, 2015, 162, 102-108.	1.9	42
152	Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution. Environmental Pollution, 2016, 216, 156-165.	3.7	42
153	Metalâ^'Solid Interactions Controlling the Bioavailability of Mercury from Sediments to Clams and Sipunculans. Environmental Science & Technology, 2006, 40, 3794-3799.	4.6	41
154	Estuarine Pollution of Metals in China: Science and Mitigation. Environmental Science & Technology, 2014, 48, 9975-9976.	4.6	41
155	Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge. Environmental Pollution, 2016, 214, 35-44.	3.7	41
156	Validation of Biokinetic Model of Metals in the Scallop Chlamys nobilis in Complex Field Environments. Environmental Science & Technology, 2008, 42, 6285-6290.	4.6	40
157	Inter-site differences of zinc susceptibility of the oyster Crassostrea hongkongensis. Aquatic Toxicology, 2013, 132-133, 26-33.	1.9	40
158	Temperature influences on the accumulation and elimination of mercury in a freshwater cladoceran, Daphnia magna. Aquatic Toxicology, 2004, 70, 245-256.	1.9	39
159	MULTIGENERATIONAL ACCLIMATION OF DAPHNIA MAGNA TO MERCURY: RELATIONSHIPS BETWEEN BIOKINETICS AND TOXICITY. Environmental Toxicology and Chemistry, 2005, 24, 2927.	2.2	39
160	Gastrointestinal uptake of cadmium and zinc by a marine teleost Acanthopagrus schlegeli. Aquatic Toxicology, 2007, 85, 143-153.	1.9	39
161	Novel Imaging of Silver Nanoparticle Uptake by a Unicellular Alga and Trophic Transfer to <i>Daphnia magna</i> . Environmental Science & Technology, 2021, 55, 5143-5151.	4.6	39
162	Influences of different selenium species on the uptake and assimilation of Hg(II) and methylmercury by diatoms and green mussels. Aquatic Toxicology, 2004, 68, 39-50.	1.9	38

#	Article	IF	CITATIONS
163	ASSIMILATION AND BIOCONCENTRATION OF Ag AND Cd BY THE MARINE BLACK BREAM AFTER WATERBORNE AND DIETARY METAL EXPOSURE. Environmental Toxicology and Chemistry, 2005, 24, 709.	2.2	38
164	Sediment-Bound Inorganic Hg Extraction Mechanisms in the Gut Fluids of Marine Deposit Feeders. Environmental Science & Technology, 2006, 40, 6181-6186.	4.6	38
165	ALTERATION OF DISSOLVED CADMIUM AND ZINC UPTAKE KINETICS BY METAL PRE-EXPOSURE IN THE BLACK SEA BREAM (ACANTHOPAGRUS SCHLEGELI). Environmental Toxicology and Chemistry, 2006, 25, 1312.	2.2	38
166	Influences of phosphate and silicate on Cr(VI) and Se(IV) accumulation in marine phytoplankton. Aquatic Toxicology, 2001, 52, 39-47.	1.9	37
167	Sediment geochemical controls on Cd, Cr, and Zn assimilation by the clam <i>Ruditapes philippinarum</i> . Environmental Toxicology and Chemistry, 2001, 20, 2309-2317.	2.2	37
168	INFLUENCES OF MATERNAL EXPOSURE ON THE TOLERANCE AND PHYSIOLOGICAL PERFORMANCE OF DAPHNIA MAGNA UNDER MERCURY STRESS. Environmental Toxicology and Chemistry, 2005, 24, 1228.	2.2	37
169	Rapid Assessments of Metal Bioavailability in Marine Sediments Using Coelomic Fluid of Sipunculan Worms. Environmental Science & Technology, 2013, 47, 7499-7505.	4.6	37
170	Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China. Chemosphere, 2016, 147, 173-179.	4.2	37
171	Tissue-specific molecular and cellular toxicity of Pb in the oyster (Crassostrea gigas): mRNA expression and physiological studies. Aquatic Toxicology, 2018, 198, 257-268.	1.9	37
172	Establishing baseline trace metals in marine bivalves in China and worldwide: Meta-analysis and modeling approach. Science of the Total Environment, 2019, 669, 746-753.	3.9	37
173	Metal Exposure and Bioavailability to a Marine Deposit-Feeding Sipuncula,Sipunculus nudus. Environmental Science & Technology, 2002, 36, 40-47.	4.6	36
174	Uptake, elimination, and biotransformation of aqueous and dietary DDT in marine fish. Environmental Toxicology and Chemistry, 2008, 27, 2053-2063.	2.2	36
175	Stoichiometric regulation of carbon and phosphorus in Pâ€deficient <i>Daphnia magna</i> . Limnology and Oceanography, 2008, 53, 244-254.	1.6	36
176	Interspecies differences in calcium content and requirement in four freshwater cladocerans explained by biokinetic parameters. Limnology and Oceanography, 2010, 55, 1426-1434.	1.6	36
177	Significance of metallothioneins in metal accumulation kinetics in marine animals. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 152, 1-8.	1.3	36
178	Incorporating exposure into aquatic toxicological studies: An imperative. Aquatic Toxicology, 2011, 105, 9-15.	1.9	36
179	Distinct biokinetic behavior of ZnO nanoparticles in Daphnia magna quantified by synthesizing 65Zn tracer. Water Research, 2013, 47, 895-902.	5.3	36
180	Improved tolerance of metals in contaminated oyster larvae. Aquatic Toxicology, 2014, 146, 61-69.	1.9	36

#	Article	IF	CITATIONS
181	Excretion of trace elements by marine copepods and their bioavailability to diatoms. Journal of Marine Research, 1998, 56, 713-729.	0.3	35
182	The Uptake of Cd, Cr, and Zn by the Macroalga Enteromorpha crinita and Subsequent Transfer to the Marine Herbivorous Rabbitfish, Siganus canaliculatus. Archives of Environmental Contamination and Toxicology, 2003, 44, 298-306.	2.1	35
183	Effects of Aqueous and Dietary Preexposure and Resulting Body Burden on Silver Biokinetics in the Green MusselPerna viridis. Environmental Science & amp; Technology, 2003, 37, 936-943.	4.6	35
184	Decoupling of cadmium biokinetics and metallothionein turnover in a marine polychaete after metal exposure. Aquatic Toxicology, 2008, 89, 47-54.	1.9	35
185	Importance of Speciation in Understanding Mercury Bioaccumulation in Tilapia Controlled by Salinity and Dissolved Organic Matter. Environmental Science & Technology, 2010, 44, 7964-7969.	4.6	35
186	Combined effects of food quantity and quality on Cd, Cr, and Zn assimilation to the green mussel, Perna viridis. Journal of Experimental Marine Biology and Ecology, 2003, 290, 49-69.	0.7	34
187	Predicting Copper Toxicity with Its Intracellular or Subcellular Concentration and the Thiol Synthesis in a Marine Diatom. Environmental Science & Technology, 2007, 41, 1777-1782.	4.6	34
188	Prediction of metal toxicity in aquatic organisms. Science Bulletin, 2013, 58, 194-202.	1.7	34
189	Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna. Water Research, 2013, 47, 4179-4187.	5.3	34
190	Feeding and absorption of the toxic dinoflagellate Alexandrium tamarense by two marine bivalves from the South China Sea. Marine Biology, 2001, 139, 617-624.	0.7	33
191	UPTAKE AND DEPURATION OF PARALYTIC SHELLFISH TOXINS IN THE GREEN-LIPPED MUSSEL, PERNA VIRIDIS: A DYNAMIC MODEL. Environmental Toxicology and Chemistry, 2005, 24, 129.	2.2	33
192	Dynamics of trace metal concentrations in an intertidal rocky shore food chain. Marine Pollution Bulletin, 2006, 52, 332-337.	2.3	33
193	Kinetics of phosphorus in Daphnia at different food concentrations and carbon:phosphorus ratios. Limnology and Oceanography, 2007, 52, 395-406.	1.6	33
194	Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms. Journal of Zhejiang University: Science A, 2014, 15, 573-592.	1.3	33
195	Speciation of Cu and Zn in Two Colored Oyster Species Determined by X-ray Absorption Spectroscopy. Environmental Science & Technology, 2015, 49, 6919-6925.	4.6	33
196	Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions. Chemosphere, 2015, 119, 1075-1083.	4.2	33
197	Cell Cycle Control of Nanoplastics Internalization in Phytoplankton. ACS Nano, 2021, 15, 12237-12248.	7.3	33
198	The regulation of calcium in Daphnia magna reared in different calcium environments. Limnology and Oceanography, 2009, 54, 746-756.	1.6	32

#	Article	IF	CITATIONS
199	Acute and chronic toxicity of polychlorinated biphenyl 126 to <i>Tigriopus japonicus</i> : Effects on survival, growth, reproduction, and intrinsic rate of population growth. Environmental Toxicology and Chemistry, 2012, 31, 639-645.	2.2	32
200	Low mercury levels in marine fish from estuarine and coastal environments in southern China. Environmental Pollution, 2014, 185, 250-257.	3.7	32
201	Reproductive Responses and Detoxification of Estuarine Oyster <i>Crassostrea hongkongensis</i> under Metal Stress: A Seasonal Study. Environmental Science & Technology, 2015, 49, 3119-3127.	4.6	32
202	Mercury exposure and source tracking in distinct marine-caged fish farm in southern China. Environmental Pollution, 2017, 220, 1138-1146.	3.7	32
203	Trace metal behavior in sediments of Jiulong River Estuary and implication for benthic exchange fluxes. Environmental Pollution, 2017, 225, 598-609.	3.7	32
204	Seasonal fluctuations of metal bioaccumulation and reproductive health of local oyster populations in a large contaminated estuary. Environmental Pollution, 2019, 250, 175-185.	3.7	32
205	Synthesis of Zinc Oxide Eudragit FS30D Nanohybrids: Structure, Characterization, and Their Application as an Intestinal Drug Delivery System. ACS Omega, 2020, 5, 11799-11808.	1.6	32
206	Uptake and depuration of cesium in the green mussel Perna viridis. Marine Biology, 2000, 137, 567-575.	0.7	31
207	Acute dietary pre-exposure and trace metal bioavailability to the barnacle Balanus amphitrite. Journal of Experimental Marine Biology and Ecology, 2004, 311, 315-337.	0.7	31
208	Mercury effects on Thalassiosira weissflogii: Applications of two-photon excitation chlorophyll fluorescence lifetime imaging and flow cytometry. Aquatic Toxicology, 2012, 110-111, 133-140.	1.9	31
209	Evolutionary Patterns in Trace Metal (Cd and Zn) Efflux Capacity in Aquatic Organisms. Environmental Science & Technology, 2013, 47, 7989-7995.	4.6	31
210	In Situ Subcellular Imaging of Copper and Zinc in Contaminated Oysters Revealed by Nanoscale Secondary Ion Mass Spectrometry. Environmental Science & Technology, 2017, 51, 14426-14435.	4.6	31
211	PEGylated dihydromyricetin-loaded nanoliposomes coated with tea saponin inhibit bacterial oxidative respiration and energy metabolism. Food and Function, 2021, 12, 9007-9017.	2.1	31
212	Releases of ingested phytoplankton carbon by Daphnia magna. Freshwater Biology, 2006, 51, 649-665.	1.2	30
213	SUBCELLULAR CADMIUM DISTRIBUTION, ACCUMULATION, AND TOXICITY IN A PREDATORY GASTROPOD, THAIS CLAVIGERA, FED DIFFERENT PREY. Environmental Toxicology and Chemistry, 2006, 25, 174.	2.2	30
214	Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata. Scientific Reports, 2015, 5, 17751.	1.6	30
215	Modeling the Toxicokinetics of Multiple Metals in the Oyster <i>Crassostrea hongkongensis</i> in a Dynamic Estuarine Environment. Environmental Science & amp; Technology, 2018, 52, 484-492.	4.6	30
216	The assimilation of detritusâ€bound metals by the marine copepod <i>Acartia spinicauda</i> . Limnology and Oceanography, 2002, 47, 604-610.	1.6	29

#	Article	IF	CITATIONS
217	Metallothionein-like proteins turnover, Cd and Zn biokinetics in the dietary Cd-exposed scallop Chlamys nobilis. Aquatic Toxicology, 2011, 105, 361-368.	1.9	29
218	Temperature and irradiance influences on cadmium and zinc uptake and toxicity in a freshwater cyanobacterium, Microcystis aeruginosa. Journal of Hazardous Materials, 2011, 190, 922-929.	6.5	29
219	Dietary bioavailability of cadmium, inorganic mercury, and zinc to a marine fish: Effects of food composition and type. Aquaculture, 2012, 356-357, 98-104.	1.7	29
220	Contrasting mercury accumulation patterns in tilapia (Oreochromis niloticus) and implications on somatic growth dilution. Aquatic Toxicology, 2012, 114-115, 23-30.	1.9	29
221	Metal accumulation in fish from different zones of a large, shallow freshwater lake. Ecotoxicology and Environmental Safety, 2012, 86, 116-124.	2.9	29
222	Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure. Journal of Hazardous Materials, 2012, 217-218, 271-278.	6.5	29
223	Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (<i>Oryzias melastigma</i>). Environmental Toxicology and Chemistry, 2014, 33, 632-640.	2.2	29
224	A metabolomic investigation of the effects of metal pollution in oysters Crassostrea hongkongensis. Marine Pollution Bulletin, 2015, 90, 317-322.	2.3	29
225	Trace metals and macroelements in mussels from Chinese coastal waters: National spatial patterns and normalization. Science of the Total Environment, 2018, 626, 307-318.	3.9	29
226	Intra- and Intercellular Silver Nanoparticle Translocation and Transformation in Oyster Gill Filaments: Coupling Nanoscale Secondary Ion Mass Spectrometry and Dual Stable Isotope Tracing Study. Environmental Science & Technology, 2021, 55, 433-446.	4.6	29
227	Spatial-temporal variations and trends predication of trace metals in oysters from the Pearl River Estuary of China during 2011–2018. Environmental Pollution, 2020, 264, 114812.	3.7	29
228	Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms. PLoS ONE, 2011, 6, e23803.	1.1	29
229	Trace metal ingestion and assimilation by the green mussel Perna viridis in a phytoplankton and sediment mixture. Marine Biology, 2002, 140, 327-335.	0.7	28
230	METAL AND OXYGEN UPTAKE IN THE GREEN MUSSEL PERNA VIRIDIS UNDER DIFFERENT METABOLIC CONDITIONS. Environmental Toxicology and Chemistry, 2005, 24, 2657.	2.2	28
231	Acclimation to and recovery from cadmium and zinc exposure by a freshwater cyanobacterium, Microcystis aeruginosa. Aquatic Toxicology, 2009, 93, 1-10.	1.9	28
232	Subcellular distribution of zinc in <i>Daphnia magna</i> and implication for toxicity. Environmental Toxicology and Chemistry, 2010, 29, 1841-1848.	2.2	28
233	Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Exposure to cadmium. Aquatic Toxicology, 2011, 101, 377-386.	1.9	28
234	Proteome pattern in oysters as a diagnostic tool for metal pollution. Journal of Hazardous Materials, 2012, 239-240, 241-248.	6.5	28

#	Article	IF	CITATIONS
235	Accumulation kinetics of arsenic in <i>Daphnia magna</i> under different phosphorus and food density regimes. Environmental Toxicology and Chemistry, 2012, 31, 1283-1291.	2.2	28
236	Spatial and temporal variations of bulk and colloidal dissolved organic matter in a large anthropogenically perturbed estuary. Environmental Pollution, 2018, 243, 1528-1538.	3.7	28
237	Multi-compartmental toxicokinetic modeling of fipronil in tilapia: Accumulation, biotransformation and elimination. Journal of Hazardous Materials, 2018, 360, 420-427.	6.5	28
238	EXTRACTION OF SPIKED METALS FROM CONTAMINATED COASTAL SEDIMENTS: A COMPARISON OF DIFFERENT METHODS. Environmental Toxicology and Chemistry, 2003, 22, 2659.	2.2	27
239	Influences of salinity on the biokinetics of Cd, Se, and Zn in the intertidal mudskipper Periophthalmus cantonensis. Chemosphere, 2005, 61, 1607-1617.	4.2	27
240	High bioconcentration of titanium dioxide nanoparticles in Daphnia magna determined by kinetic approach. Science of the Total Environment, 2016, 569-570, 1224-1231.	3.9	27
241	Effects of phosphate on trace element accumulation in rice (Oryza sativa L.): a 5-year phosphate application study. Journal of Soils and Sediments, 2016, 16, 1440-1447.	1.5	27
242	Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification. Scientific Reports, 2017, 7, 324.	1.6	27
243	Production of colloidal organic carbon and trace metals by phytoplankton decomposition. Limnology and Oceanography, 2001, 46, 278-286.	1.6	26
244	MODELING OF CADMIUM BIOACCUMULATION IN TWO POPULATIONS OF THE GREEN MUSSEL PERNA VIRIDIS. Environmental Toxicology and Chemistry, 2005, 24, 2299.	2.2	26
245	Accumulation and elimination of aqueous and dietary silver in Daphnia magna. Chemosphere, 2006, 64, 26-35.	4.2	26
246	Cadmiumâ€induced changes in trace element bioaccumulation and proteomics perspective in four marine bivalves. Environmental Toxicology and Chemistry, 2012, 31, 1292-1300.	2.2	26
247	Mercury and stable isotope signatures in caged marine fish and fish feeds. Journal of Hazardous Materials, 2012, 203-204, 13-21.	6.5	26
248	Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers. Scientific Reports, 2016, 6, 25394.	1.6	26
249	Physiological and cellular responses of oysters (<i>Crassostrea hongkongensis</i>) in a multimetalâ€contaminated estuary. Environmental Toxicology and Chemistry, 2016, 35, 2577-2586.	2.2	26
250	Evaluation of nano-ZnOs as a novel Zn source for marine fish: importance of digestive physiology. Nanotoxicology, 2017, 11, 1026-1039.	1.6	26
251	Relating metals with major cations in oyster Crassostrea hongkongensis: A novel approach to calibrate metals against salinity. Science of the Total Environment, 2017, 577, 299-307.	3.9	26
252	Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river. Environmental Pollution, 2020, 264, 114683.	3.7	26

#	Article	IF	CITATIONS
253	High Tolerance and Delayed Responses of <i>Daphnia magna</i> to Neonicotinoid Insecticide Imidacloprid: Toxicokinetic and Toxicodynamic Modeling. Environmental Science & Technology, 2021, 55, 458-467.	4.6	26
254	Contribution of Dietary Uptake to PAH Bioaccumulation in a Simplified Pelagic Food Chain: Modeling the Influences of Continuous vs Intermittent Feeding in Zooplankton and Fish. Environmental Science & Technology, 2021, 55, 1930-1940.	4.6	26
255	Bioaccumulation of silver, cadmium and mercury in the abalone Haliotis diversicolor from water and food sources. Aquaculture, 2008, 283, 194-202.	1.7	25
256	Feeding efficiency of a marine copepod Acartia erythraea on eight different algal diets. Acta Ecologica Sinica, 2010, 30, 22-26.	0.9	25
257	Real-time monitoring of the dissolution kinetics of silver nanoparticles and nanowires in aquatic environments using an aggregation-induced emission fluorogen. Chemical Communications, 2018, 54, 4585-4588.	2.2	25
258	Decreasing mercury levels in consumer fish over the three decades of increasing mercury emissions in China. , 2022, 1, 46-52.		25
259	INFLUENCES OF METAL-LIGAND COMPLEXES ON THE CADMIUM AND ZINC BIOKINETICS IN THE MARINE BACTERIUM, BACILLUS FIRMUS. Environmental Toxicology and Chemistry, 2008, 27, 131.	2.2	24
260	Gender differences in TBT accumulation and transformation in Thais clavigera after aqueous and dietary exposure. Aquatic Toxicology, 2010, 99, 413-422.	1.9	24
261	Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China estuary. Ecotoxicology, 2013, 22, 671-682.	1.1	24
262	Differential influences of Cu and Zn chronic exposure on Cd and Hg bioaccumulation in an estuarine oyster. Aquatic Toxicology, 2014, 148, 204-210.	1.9	24
263	Inter-species differences of total mercury and methylmercury in farmed fish in Southern China: Does feed matter?. Science of the Total Environment, 2019, 651, 1857-1866.	3.9	24
264	Contrasting temporal dynamics of dissolved and colloidal trace metals in the Pearl River Estuary. Environmental Pollution, 2020, 265, 114955.	3.7	24
265	Highly Sensitive and Specific Responses of Oyster Hemocytes to Copper Exposure: Single-Cell Transcriptomic Analysis of Different Cell Populations. Environmental Science & Technology, 2022, 56, 2497-2510.	4.6	24
266	Biological uptake and assimilation of iron by marine plankton: influences of macronutrients. Marine Chemistry, 2001, 74, 213-226.	0.9	23
267	MULTIPHASE BIOKINETIC MODELING OF CADMIUM ACCUMULATION IN DAPHNIA MAGNA FROM DIETARY AND AQUEOUS SOURCES. Environmental Toxicology and Chemistry, 2006, 25, 2840.	2.2	23
268	Aqueous and dietary copper uptake and elimination in <i>Daphnia magna</i> determined by the ⁶⁷ CU radiotracer. Environmental Toxicology and Chemistry, 2009, 28, 2360-2366.	2.2	23
269	Sequestration of total and methyl mercury in different subcellular pools in marine caged fish. Journal of Hazardous Materials, 2011, 198, 113-122.	6.5	23
270	Differential roles of metallothioneinâ€like proteins in cadmium uptake and elimination by the scallop <i>Chlamys nobilis</i> . Environmental Toxicology and Chemistry, 2011, 30, 738-746.	2.2	23

#	Article	IF	CITATIONS
271	Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. Environmental Pollution, 2019, 251, 264-276.	3.7	23
272	Silver uptake by a marine diatom and its transfer to the coastal copepod <i>Acartia spinicauda</i> . Environmental Toxicology and Chemistry, 2004, 23, 682-690.	2.2	22
273	Uptake of Aqueous and Dietary Metals by MusselPerna viridiswith Different Cd Exposure Histories. Environmental Science & Technology, 2005, 39, 9363-9369.	4.6	22
274	Biokinetics and biotransformation of DDTs in the marine green mussels Perna viridis. Aquatic Toxicology, 2009, 93, 196-204.	1.9	22
275	Bioaccumulation and trophic transfer of dioxins in marine copepods and fish. Environmental Pollution, 2011, 159, 3390-3397.	3.7	22
276	Linking trace element variations with macronutrients and major cations in marine mussels <i>Mytilus edulis</i> and <i>Perna viridis</i> . Environmental Toxicology and Chemistry, 2015, 34, 2041-2050.	2.2	22
277	Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna. Environmental Pollution, 2017, 231, 311-318.	3.7	22
278	Seasonal and spatial variations of biomarker responses of rock oysters in a coastal environment influenced by large estuary input. Environmental Pollution, 2018, 242, 1253-1265.	3.7	22
279	Bioturbation effects on metal release from contaminated sediments are metal-dependent. Environmental Pollution, 2019, 250, 87-96.	3.7	22
280	Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae. Environmental Pollution, 2019, 249, 116-124.	3.7	22
281	Methylmercury biomagnification in aquatic food webs of Poyang Lake, China: Insights from amino acid signatures. Journal of Hazardous Materials, 2021, 404, 123700.	6.5	22
282	The role of intestinal microbiota of the marine fish (Acanthopagrus latus) in mercury biotransformation. Environmental Pollution, 2021, 277, 116768.	3.7	22
283	Responses of Zn assimilation by coastal plankton to macronutrients. Limnology and Oceanography, 2001, 46, 1524-1534.	1.6	21
284	BIOKINETICS OF CADMIUM AND ZINC IN A MARINE BACTERIUM: INFLUENCES OF METAL INTERACTION AND PRE-EXPOSURE. Environmental Toxicology and Chemistry, 2008, 27, 1794.	2.2	21
285	Dietary toxicity of field-contaminated invertebrates to marine fish: Effects of metal doses and subcellular metal distribution. Aquatic Toxicology, 2012, 120-121, 1-10.	1.9	21
286	Antioxidant and detoxification responses of oysters <i>Crassostrea hongkongensis</i> in a multimetalâ€contaminated estuary. Environmental Toxicology and Chemistry, 2016, 35, 2798-2805.	2.2	21
287	Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model. Environmental Pollution, 2017, 222, 323-330.	3.7	21

Heavy Metals in Bivalve Mollusks. , 2017, , 553-594.

#	Article	IF	CITATIONS
289	Semiâ€synthesis and characterization of some new matrine derivatives as insecticidal agents. Pest Management Science, 2020, 76, 2711-2719.	1.7	21
290	Benzo[<i>a</i>]pyrene absorption and exposure pathways in the green mussel <i>Perna viridis</i> . Environmental Toxicology and Chemistry, 2002, 21, 451-458.	2.2	20
291	SEASONAL STUDY ON THE Cd, Se, AND Zn UPTAKE BY NATURAL COASTAL PHYTOPLANKTON ASSEMBLAGES. Environmental Toxicology and Chemistry, 2005, 24, 161.	2.2	20
292	Optimal dietary requirements of zinc in marine medaka Oryzias melastigma: Importance of daily net flux. Aquaculture, 2015, 448, 54-62.	1.7	20
293	Comparison of mercury bioaccumulation between wild and mariculture food chains from a subtropical bay of Southern China. Environmental Geochemistry and Health, 2016, 38, 39-49.	1.8	20
294	Using Zn Isotopic Signatures for Source Identification in a Contaminated Estuary of Southern China. Environmental Science & Technology, 2020, 54, 5140-5149.	4.6	20
295	Toxicity assessment and underlying mechanisms of multiple metal organic frameworks using the green algae Chlamydomonas reinhardtii model. Environmental Pollution, 2021, 291, 118199.	3.7	20
296	Differential cascading cellular and subcellular toxicity induced by two sizes of nanoplastics. Science of the Total Environment, 2022, 829, 154593.	3.9	20
297	Inorganic mercury binding with different sulfur species in anoxic sediments and their gut juice extractions. Environmental Toxicology and Chemistry, 2009, 28, 1851-1857.	2.2	19
298	Two-photon excitation chlorophyll fluorescence lifetime imaging: a rapid and noninvasive method for in vivo assessment of cadmium toxicity in a marine diatom Thalassiosira weissflogii. Planta, 2012, 236, 1653-1663.	1.6	19
299	Methylmercury in fish from the South China Sea: Geographical distribution and biomagnification. Marine Pollution Bulletin, 2013, 77, 437-444.	2.3	19
300	Relationship between metal and polybrominated diphenyl ether (PBDE) body burden and health risks in the barnacle Balanus amphitrite. Marine Pollution Bulletin, 2015, 100, 383-392.	2.3	19
301	Diet-specific trophic transfer of mercury in tilapia (Oreochromis niloticus): Biodynamic perspective. Environmental Pollution, 2018, 234, 288-296.	3.7	19
302	Levels of trace elements, methylmercury and polybrominated diphenyl ethers in foraging green turtles in the South China region and their conservation implications. Environmental Pollution, 2018, 234, 735-742.	3.7	19
303	Metal accumulation, growth and reproduction of razor clam Sinonovacula constricta transplanted in a multi-metal contaminated estuary. Science of the Total Environment, 2018, 636, 829-837.	3.9	19
304	Differentiating Silver Nanoparticles and Ions in Medaka Larvae by Coupling Two Aggregation-Induced Emission Fluorophores. Environmental Science & Technology, 2019, 53, 5895-5905.	4.6	19
305	Zn Isotope Fractionation in the Oyster <i>Crassostrea hongkongensis</i> and Implications for Contaminant Source Tracking. Environmental Science & amp; Technology, 2019, 53, 6402-6409. 	4.6	19
306	Direct Visualization and Quantification of Maternal Transfer of Silver Nanoparticles in Zooplankton. Environmental Science & Technology, 2020, 54, 10763-10771.	4.6	19

#	Article	IF	CITATIONS
307	Subcellular Imaging of Localization and Transformation of Silver Nanoparticles in the Oyster Larvae. Environmental Science & Technology, 2020, 54, 11434-11442.	4.6	19
308	Intracellular Biotransformation of Cu(II)/Cu(I) Explained High Cu Toxicity to Phytoplankton <i>Chlamydomonas reinhardtii</i> . Environmental Science & Technology, 2021, 55, 14772-14781.	4.6	19
309	TRANSGENERATIONAL RETENTION AND MATERNAL TRANSFER OF SELENIUM IN DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 2006, 25, 2519.	2.2	18
310	METHYLMERCURY EXTRACTION FROM ARTIFICIAL SEDIMENTS BY THE GUT JUICE OF THE SIPUNCULAN, SIPUNCULUS NUDUS. Environmental Toxicology and Chemistry, 2008, 27, 138.	2.2	18
311	Uptake of Dissolved Organic Carbon-Complexed ⁶⁵ Cu by the Green Mussel <i>Perna viridis</i> . Environmental Science & Technology, 2012, 46, 2383-2390.	4.6	18
312	Reduced cadmium accumulation and toxicity in <i>Daphnia magna</i> under carbon nanotube exposure. Environmental Toxicology and Chemistry, 2015, 34, 2824-2832.	2.2	18
313	Prey-specific determination of arsenic bioaccumulation and transformation in a marine benthic fish. Science of the Total Environment, 2017, 586, 296-303.	3.9	18
314	Copper-induced metabolic variation of oysters overwhelmed by salinity effects. Chemosphere, 2017, 174, 331-341.	4.2	18
315	Bioaccumulationâ€based silver nanoparticle toxicity in <i>Daphnia magna</i> and maternal impacts. Environmental Toxicology and Chemistry, 2017, 36, 3359-3366.	2.2	18
316	Dissolution kinetics of zinc oxide nanoparticles: real-time monitoring using a Zn ²⁺ -specific fluorescent probe. Environmental Science: Nano, 2019, 6, 2259-2268.	2.2	18
317	INFLUENCES OF AGING ON THE BIOAVAILABILITY OF SEDIMENT-BOUND Cd AND Zn TO DEPOSIT-FEEDING SIPUNCULANS AND SOLDIER CRABS. Environmental Toxicology and Chemistry, 2006, 25, 2775.	2.2	17
318	Spatial distribution of gut juice extractable Cu, Pb and Zn in sediments from the Pearl River Estuary, Southern China. Marine Environmental Research, 2012, 77, 112-119.	1.1	17
319	Isotopic fractionation during the uptake and elimination of inorganic mercury by a marine fish. Environmental Pollution, 2015, 206, 202-208.	3.7	17
320	Respiration disruption and detoxification at the protein expression levels in the Pacific oyster (Crassostrea gigas) under zinc exposure. Aquatic Toxicology, 2017, 191, 34-41.	1.9	17
321	Novel Insights into the Role of Copper in Critical Life Stages of Oysters Revealed by High-Resolution NanoSIMS Imaging. Environmental Science & 2019, 70, 2019, 53, 14724-14733.	4.6	17
322	Synthesis and Efficacy of the <i>N</i> -carbamoyl-methionine Copper on the Growth Performance, Tissue Mineralization, Immunity, and Enzymatic Antioxidant Capacity of Nile tilapia (<i>Oreochromis) Tj ETQq0 0</i>	01gBT/O	verlock 10 Tf
323	Assimilation efficiencies of chemical contaminants in aquatic invertebrates: A synthesis. , 1999, 18, 2034.		17

Functional heterogeneity of immune defenses in molluscan oysters Crassostrea hongkongensis revealed by high-throughput single-cell transcriptome. Fish and Shellfish Immunology, 2022, 120, 1.6 17 202-213.

#	Article	IF	CITATIONS
325	Effective flocculation of harmful algae Microcystis aeruginosa by nanoscale metal–organic framework NH2-MIL-101(Cr). Chemical Engineering Journal, 2022, 433, 134584.	6.6	17
326	Radiotracer studies on the feeding of two marine bivalves on the toxic and nontoxic dinoflagellate Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology, 2001, 263, 65-75.	0.7	16
327	Co-Transport of Metal Complexes by the Green MusselPerna viridis. Environmental Science & Technology, 2006, 40, 4523-4527.	4.6	16
328	Biokinetics of paralytic shellfish toxins in the green-lipped mussel, Perna viridis. Marine Pollution Bulletin, 2007, 54, 1068-1071.	2.3	16
329	Radiocesium uptake, trophic transfer, and exposure in three estuarine fish with contrasting feeding habits. Chemosphere, 2016, 163, 499-507.	4.2	16
330	Homeostatic regulation of copper in a marine fish simulated by a physiologically based pharmacokinetic model. Environmental Pollution, 2016, 218, 1245-1254.	3.7	16
331	Enhanced utilization of organic phosphorus in a marine diatom Thalassiosira weissflogii : A possible mechanism for aluminum effect under P limitation. Journal of Experimental Marine Biology and Ecology, 2016, 478, 77-85.	0.7	16
332	Micro-elemental retention in rotifers and their trophic transfer to marine fish larvae: Influences of green algae enrichment. Aquaculture, 2019, 499, 374-380.	1.7	16
333	Multicompartmental Toxicokinetic Modeling of Discrete Dietary and Continuous Waterborne Uptake of Two Polycyclic Aromatic Hydrocarbons by Zebrafish <i>Danio rerio</i> . Environmental Science & amp; Technology, 2020, 54, 1054-1065.	4.6	16
334	Dynamics of trace metals with different size species in the Pearl River Estuary, Southern China. Science of the Total Environment, 2022, 807, 150712.	3.9	16
335	Fulfilling iron requirements by a coastal diatom under different temperatures and irradiances. Limnology and Oceanography, 2006, 51, 925-935.	1.6	15
336	The Importance of Cellular Phosphorus in Controlling the Uptake and Toxicity of Cadmium and Zinc in <i>Microcystis Aeruginosa</i> , A Freshwater Cyanobacterium. Environmental Toxicology and Chemistry, 2009, 28, 1618-1626.	2.2	15
337	The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments. Environmental Pollution, 2009, 157, 981-986.	3.7	15
338	A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis. Marine Pollution Bulletin, 2016, 112, 436-442.	2.3	15
339	The protective roles of TiO 2 nanoparticles against UV-B toxicity in Daphnia magna. Science of the Total Environment, 2017, 593-594, 47-53.	3.9	15
340	Inter-species difference of copper accumulation in three species of marine mussels: Implication for biomonitoring. Science of the Total Environment, 2019, 692, 1029-1036.	3.9	15
341	In vivo oral bioavailability of fish mercury and comparison with in vitro bioaccessibility. Science of the Total Environment, 2019, 683, 648-658.	3.9	15
342	Molecular responses of an estuarine oyster to multiple metal contamination in Southern China revealed by RNA-seq. Science of the Total Environment, 2020, 701, 134648.	3.9	15

#	Article	IF	CITATIONS
343	Biodynamics of Silver Nanoparticles in an Estuarine Oyster Revealed by ^{110m} AgNP Tracing. Environmental Science & Technology, 2020, 54, 965-974.	4.6	15
344	Physiologically Based Pharmacokinetic Model for the Biotransportation of Arsenic in Marine Medaka (<i>Oryzias melastigma</i>). Environmental Science & Technology, 2020, 54, 7485-7493.	4.6	15
345	The anti-bacterial effects of aerial parts of Scutellaria baicalensis: Potential application as an additive in aquaculture feedings. Aquaculture, 2020, 526, 735418.	1.7	15
346	In Situ DGT Sensing of Bioavailable Metal Fluxes to Improve Toxicity Predictions for Sediments. Environmental Science & Technology, 2021, 55, 7355-7364.	4.6	15
347	Bioimaging of metals in environmental toxicological studies: Linking localization and functionality. Critical Reviews in Environmental Science and Technology, 2022, 52, 3384-3414.	6.6	15
348	Bio-conditioning poly-dihydromyricetin zinc nanoparticles synthesis for advanced catalytic degradation and microbial inhibition. Journal of Nanostructure in Chemistry, 2022, 12, 903-917.	5.3	15
349	Relative importance of inefficient feeding and consumer excretion to organic carbon flux from Daphnia. Freshwater Biology, 2006, 51, 1911-1923.	1.2	14
350	Coupling of methylmercury uptake with respiration and water pumping in freshwater tilapia <i>Oreochromis niloticus</i> . Environmental Toxicology and Chemistry, 2011, 30, 2142-2147.	2.2	14
351	Trace metal pollution in China. Science of the Total Environment, 2012, 421-422, 1-2.	3.9	14
352	Metal bioavailability from different natural prey to a marine predator Nassarius siquijorensis. Aquatic Toxicology, 2013, 126, 266-273.	1.9	14
353	Facilitated Bioaccumulation of Cadmium and Copper in the Oyster <i>Crassostrea hongkongensis</i> Solely Exposed to Zinc. Environmental Science & Technology, 2013, 47, 130114120505000.	4.6	14
354	Depuration of metals by the greenâ€colored oyster <i>Crassostrea sikamea</i> . Environmental Toxicology and Chemistry, 2014, 33, 2379-2385.	2.2	14
355	Understanding the micro-elemental nutrition in the larval stage of marine fish: A multi-elemental stoichiometry approach. Aquaculture, 2018, 488, 189-198.	1.7	14
356	Aging Influences on the Biokinetics of Functional TiO ₂ Nanoparticles with Different Surface Chemistries in <i>Daphnia magna</i> . Environmental Science & Technology, 2018, 52, 7901-7909.	4.6	14
357	A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol. Journal of Hazardous Materials, 2022, 433, 128702.	6.5	14
358	Colloidal organic carbon and trace metal (Cd, Fe, and Zn) releases by diatom exudation and copepod grazing. Journal of Experimental Marine Biology and Ecology, 2004, 307, 17-34.	0.7	13
359	Uses of subcellular metal distribution in prey to predict metal bioaccumulation and internal exposure in a predator. Environmental Toxicology and Chemistry, 2008, 27, 1160-1166.	2.2	13
360	High sensitivity of cyanobacterium <i>Microcystis aeruginosa</i> to copper and the prediction of copper toxicity. Environmental Toxicology and Chemistry, 2010, 29, 2260-2268.	2.2	13

#	Article	IF	CITATIONS
361	Responses of abalone Haliotis diversicolor to sublethal exposure of waterborne and dietary silver and cadmium. Ecotoxicology and Environmental Safety, 2010, 73, 1130-1137.	2.9	13
362	Unifying Prolonged Copper Exposure, Accumulation, and Toxicity from Food and Water in a Marine Fish. Environmental Science & 2017, Technology, 2012, 46, 3465-3471.	4.6	13
363	Contrasting metal detoxification in polychaetes, bivalves and fish from a contaminated bay. Aquatic Toxicology, 2015, 159, 62-68.	1.9	13
364	Multiple trace element accumulation in the mussel Septifer virgatus: Counteracting effects of salinity on uptake and elimination. Environmental Pollution, 2018, 242, 375-382.	3.7	13
365	Growth performance, tissue mineralization, antioxidant activity and immune response of <i>oreochromis niloticus</i> fed with conventional and gluconic acid zinc dietary supplements. Aquaculture Nutrition, 2021, 27, 897-907.	1.1	13
366	Cu-based nanoparticle toxicity to zebrafish cells regulated by cellular discharges. Environmental Pollution, 2022, 292, 118296.	3.7	13
367	Title is missing!. Water, Air, and Soil Pollution, 2003, 148, 243-258.	1.1	12
368	Mercury Concentrations in Commercial Fish Species of Lake Phewa, Nepal. Bulletin of Environmental Contamination and Toxicology, 2013, 91, 272-277.	1.3	12
369	Chronic effects of copper in oysters <i>Crassostrea hongkongensis</i> under different exposure regimes as shown by NMRâ€based metabolomics. Environmental Toxicology and Chemistry, 2017, 36, 2428-2435.	2.2	12
370	Uniquely high turnover of nickel in contaminated oysters Crassostrea hongkongensis: Biokinetics and subcellular distribution. Aquatic Toxicology, 2018, 194, 159-166.	1.9	12
371	Real-time in vitro monitoring of the subcellular toxicity of inorganic Hg and methylmercury in zebrafish cells. Aquatic Toxicology, 2021, 236, 105859.	1.9	12
372	Photodynamic control of harmful algal blooms by an ultra-efficient and degradable AIEgen-based photosensitizer. Chemical Engineering Journal, 2021, 417, 127890.	6.6	12
373	Intracellular trafficking of silver nanoparticles and silver ions determined their specific mitotoxicity to the zebrafish cell line. Environmental Science: Nano, 2021, 8, 1364-1375.	2.2	12
374	Roles of hemocyte subpopulations in silver nanoparticle transformation and toxicity in the oysters Crassostrea hongkongensis. Environmental Pollution, 2022, 305, 119281.	3.7	12
375	Trace metals in barnacles: the significance of trophic transfer. Science in China Series C: Life Sciences, 2005, 48, 110-117.	1.3	11
376	Calcium balance in <i>Daphnia</i> grown on diets differing in food quantity, phosphorus and calcium. Freshwater Biology, 2009, 54, 2200-2211.	1.2	11
377	Cadmium and copper accumulation and toxicity in the macroalga Gracilaria tenuistipitata. Aquatic Biology, 2010, 11, 17-26.	0.5	11
378	Biokinetics and metallothioneinâ€like proteins response in oysters facing metal challenges in an estuary. Environmental Toxicology and Chemistry, 2015, 34, 1818-1825.	2.2	11

#	Article	IF	CITATIONS
379	A metabolomic study on the biological effects of metal pollutions in oysters Crassostrea sikamea. Marine Pollution Bulletin, 2016, 102, 216-222.	2.3	11
380	Transfer and bioavailability of inorganic and organic arsenic in sediment-water-biota microcosm. Aquatic Toxicology, 2021, 232, 105763.	1.9	11
381	Adenine deficient yeast: A fluorescent biosensor for the detection of Labile Zn(II) in aqueous solution. Biosensors and Bioelectronics, 2021, 179, 113075.	5.3	11
382	In situ high-resolution two-dimensional profiles of redox sensitive metal mobility in sediment-water interface and porewater from estuarine sediments. Science of the Total Environment, 2022, 820, 153034.	3.9	11
383	Formation and distribution of methylmercury in sediments at a mariculture site: a mesocosm study. Journal of Soils and Sediments, 2013, 13, 1301-1308.	1.5	10
384	Differential acclimation of a marine diatom to inorganic mercury and methylmercury exposure. Aquatic Toxicology, 2013, 138-139, 52-59.	1.9	10
385	Two-Compartment Kinetic Modeling of Radiocesium Accumulation in Marine Bivalves under Hypothetical Exposure Regimes. Environmental Science & Technology, 2016, 50, 2677-2684.	4.6	10
386	Dynamics of maternally transferred trace elements in oyster larvae and latent growth effects. Scientific Reports, 2017, 7, 3580.	1.6	10
387	The metabolic regulation of fenofibrate is dependent on dietary protein content in male juveniles of Nile tilapia (<i>Oreochromis niloticus</i>). British Journal of Nutrition, 2019, 122, 648-656.	1.2	10
388	New insights into the chemical forms of extremely high methylmercury in songbird feathers from a contaminated site. Chemosphere, 2019, 225, 803-809.	4.2	10
389	Identification of SNPs involved in Zn and Cu accumulation in the Pacific oyster (Crassostrea gigas) by genome-wide association analysis. Ecotoxicology and Environmental Safety, 2020, 192, 110208.	2.9	10
390	Size speciation of dissolved trace metals in hydrothermal plumes on the Southwest Indian Ridge. Science of the Total Environment, 2021, 771, 145367.	3.9	10
391	Feeding containing the aerial part of <i>Scutellaria baicalensis</i> promotes the growth and nutritive value of rabbit fish <i>Siganus fuscescens</i> . Food Science and Nutrition, 2021, 9, 4827-4838.	1.5	10
392	Physiologically based pharmacokinetic model revealed the distinct bio-transportation and turnover of arsenobetaine and arsenate in marine fish. Aquatic Toxicology, 2021, 240, 105991.	1.9	10
393	Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure. Aquatic Toxicology, 2011, 101, 387-395.	1.9	9
394	Regulation of sodium and calcium in <i>Daphnia magna</i> exposed to silver nanoparticles. Environmental Toxicology and Chemistry, 2013, 32, 913-919.	2.2	9
395	Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes. Science of the Total Environment, 2018, 616-617, 594-601.	3.9	9
396	Optimum selenium requirement of juvenile Nile tilapia, <i>Oreochromis niloticus</i> . Aquaculture Nutrition, 2020, 26, 528-535.	1.1	9

#	ARTICLE	IF	CITATIONS
397	Accumulation of different metals in oyster Crassostrea gigas: Significance and specificity of SLC39A (ZIP) and SLC30A (ZnT) gene families and polymorphism variation. Environmental Pollution, 2021, 276, 116706.	3.7	9
398	<i>In Situ</i> Generation of <i>N</i> -Heteroaromatic Polymers: Metal-Free Multicomponent Polymerization for Photopatterning, Morphological Imaging, and Cr(VI) Sensing. CCS Chemistry, 2022, 4, 2308-2320.	4.6	9
399	Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. Chemosphere, 2021, 281, 130762.	4.2	9
400	KINETIC UPTAKE OF BIOAVAILABLE CADMIUM, SELENIUM, AND ZINC BY DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 2002, 21, 2348.	2.2	9
401	Boosting Cyanobacteria Growth by Fivefold with Aggregation-Induced Emission Luminogens: Toward the Development of a Biofactory. ACS Sustainable Chemistry and Engineering, 2021, 9, 15258-15266.	3.2	9
402	Antibiotic application may raise the potential of methylmercury accumulation in fish. Science of the Total Environment, 2022, 819, 152946.	3.9	9
403	Maternal transfer and biodistribution of citrate and luminogens coated silver nanoparticles in medaka fish. Journal of Hazardous Materials, 2022, 433, 128862.	6.5	9
404	Contrasting patterns of cadmium bioaccumulation in freshwater cladocerans. Limnology and Oceanography, 2011, 56, 257-267.	1.6	8
405	Different responses of abalone Haliotis discus hannai to waterborne and dietary-borne copper and zincexposure. Ecotoxicology and Environmental Safety, 2013, 91, 10-17.	2.9	8
406	Novel insights into iron regulation and requirement in marine medaka Oryzias melastigma. Scientific Reports, 2016, 6, 26615.	1.6	8
407	Transcriptome analysis of differentially expressed genes in the fore- and hind-intestine of ovate pompano Trachinotus ovatus. Aquaculture, 2019, 508, 76-82.	1.7	8
408	Dietary metal bioavailability in razor clam Sinonovacula constricta under fluctuating seston environments. Science of the Total Environment, 2019, 653, 131-139.	3.9	8
409	Copper promoting oyster larval growth and settlement: Molecular insights from RNA-seq. Science of the Total Environment, 2021, 784, 147159.	3.9	8
410	Temporal and spatial characteristics of PAHs in oysters from the Pearl River Estuary, China during 2015–2020. Science of the Total Environment, 2021, 793, 148495.	3.9	8
411	Subcellular metal distribution in two deep-sea mollusks: Insight of metal adaptation and detoxification near hydrothermal vents. Environmental Pollution, 2020, 266, 115303.	3.7	8
412	Pollution in the Pearl River Estuary. Estuaries of the World, 2020, , 13-35.	0.1	8
413	Immune responses of oyster hemocyte subpopulations to in vitro and in vivo zinc exposure. Aquatic Toxicology, 2022, 242, 106022.	1.9	8
414	Transfer and efflux of cadmium and silver in marine snails and fish fed preâ€exposed mussel prey. Environmental Toxicology and Chemistry, 2007, 26, 1172-1178.	2.2	7

#	Article	IF	CITATIONS
415	INTERACTIONS OF SILVER, CADMIUM, AND COPPER ACCUMULATION IN GREEN MUSSELS (PERNA VIRIDIS). Environmental Toxicology and Chemistry, 2007, 26, 1764.	2.2	7
416	Biochemical responses and DNA damage in red sea bream from coastal Fujian Province, China. Ecotoxicology and Environmental Safety, 2011, 74, 1526-1535.	2.9	7
417	Interaction of functionalized fullerenes and metal accumulation in <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2014, 33, 1122-1128.	2.2	7
418	Environmental Pollution of the Pearl River Estuary, China. Estuaries of the World, 2020, , .	0.1	7
419	The herbal extract deriving from aerial parts of Scutellaria baicalensis shows anti-inflammation and anti-hypoxia responses in cultured fin cells from rabbit fish. Fish and Shellfish Immunology, 2020, 106, 71-78.	1.6	7
420	Bioimaging revealed contrasting organelle-specific transport of copper and zinc and implication for toxicity. Environmental Pollution, 2022, 299, 118891.	3.7	7
421	A yeast-based biosensor for silver nanoparticle accumulation and cellular dissolution. Biosensors and Bioelectronics, 2022, 205, 114082.	5.3	7
422	Interaction of antibacterial silver nanoparticles and microbiota-dependent holobionts revealed by metatranscriptomic analysis. Environmental Science: Nano, 2019, 6, 3242-3255.	2.2	6
423	Zinc source differentiation in hydrothermal vent mollusks: Insight from Zn isotope ratios. Science of the Total Environment, 2021, 773, 145653.	3.9	6
424	Multi-omics reveals the regulatory mechanisms of zinc exposure on the intestine-liver axis of golden pompano Trachinotus ovatus. Science of the Total Environment, 2022, 816, 151497.	3.9	6
425	Temporal Variability and Ignorance in Monte Carlo Contaminant Bioaccumulation Models: A Case Study with Selenium in Mytilus edulis. Risk Analysis, 2001, 21, 383-394.	1.5	5
426	Dioxin and phthalate uptake and assimilation by the green mussel Perna viridis. Environmental Pollution, 2013, 178, 455-462.	3.7	5
427	Biokinetics and subcellular distribution of metals in Daphnia magna following Zn exposure: Implication for metal regulation. Science of the Total Environment, 2019, 696, 134004.	3.9	5
428	Allocation and stoichiometric regulation of phosphorus in a freshwater zooplankton under limited conditions: Implication for nutrient cycling. Science of the Total Environment, 2020, 728, 138795.	3.9	5
429	Protein molecular responses of field-collected oysters Crassostrea hongkongensis with greatly varying Cu and Zn body burdens. Aquatic Toxicology, 2021, 232, 105749.	1.9	5
430	Silver nanowires kinetics and real-time imaging of in situ Ag ion dissolution in Daphnia magna. Science of the Total Environment, 2021, 782, 146933.	3.9	5
431	Integrated transcriptomics and proteomics revealed the distinct toxicological effects of multi-metal contamination on oysters. Environmental Pollution, 2021, 284, 117533.	3.7	5
432	Responses of two marine fish to organically complexed Zn: Insights from microbial community and liver transcriptomics. Science of the Total Environment, 2022, 835, 155457.	3.9	5

#	Article	IF	CITATIONS
433	Bioavailability of purified subcellular metals to a marine fish. Environmental Toxicology and Chemistry, 2013, 32, 2109-2116.	2.2	4
434	Determination of the Low Hg Accumulation in Rabbitfish (<i>Siganus canaliculatus</i>) by Various Elimination Pathways: Simulation by a Physiologically Based Pharmacokinetic Model. Environmental Science & Technology, 2020, 54, 7440-7449.	4.6	4
435	NanoSIMS Imaging of Bioaccumulation and Subcellular Distribution of Manganese During Oyster Gametogenesis. Environmental Science & Technology, 2021, 55, 8223-8235.	4.6	4
436	ASSIMILATION OF CADMIUM, CHROMIUM, AND ZINC BY THE GREEN MUSSEL PERNA VIRIDIS AND THE CLAM RUDITAPES PHILIPPINARUM. Environmental Toxicology and Chemistry, 2000, 19, 1660.	2.2	4
437	SILVER UPTAKE BY A MARINE DIATOM AND ITS TRANSFER TO THE COASTAL COPEPOD ACARTIA SPINICAUDA. Environmental Toxicology and Chemistry, 2004, 23, 682.	2.2	4
438	Gut-microbial adaptation and transformation of silver nanoparticles mediated the detoxification of <i>Daphnia magna</i> and their offspring. Environmental Science: Nano, 2022, 9, 361-374.	2.2	4
439	Improving Heat Resistance of Nile Tilapia (Oreochromis niloticus) by Dietary Zinc Supplementation. Aquaculture Nutrition, 2022, 2022, 1-12.	1.1	4
440	Molecular phylogenetic and morphometric analysis of population structure and demography of endangered threadfin fish Eleutheronema from Indo-Pacific waters. Scientific Reports, 2022, 12, 3455.	1.6	4
441	RELATIONSHIPS BETWEEN Cd AND Zn PARTITIONING AND GEOCHEMICAL COMPOSITION IN SEDIMENTS FROM CHINESE RIVERS. Environmental Toxicology and Chemistry, 2005, 24, 294.	2.2	3
442	Metal contamination and pollution in China: Where are we now?. Integrated Environmental Assessment and Management, 2012, 8, 760-762.	1.6	3
443	Effects of metal burden and food avoidance on the transfer of metals from naturally contaminated prey to a marine predator Nassarius siquijorensis. Aquatic Toxicology, 2013, 132-133, 111-118.	1.9	3
444	Distinguishing multiple Zn sources in oysters in a complex estuarine system using Zn isotope ratio signatures. Environmental Pollution, 2021, 289, 117941.	3.7	3
445	Comparison of metal uptake rate and absorption efficiency in marine bivalves. , 2001, 20, 1367.		3
446	Exploring the effects of consumer–resource dynamics on contaminant bioaccumulation by aquatic herbivores. Environmental Toxicology and Chemistry, 1999, 18, 1582-1590.	2.2	2
447	Influences of macroalga-derived dissolved organic carbon on the aquatic toxicity of copper and cadmium. Chemosphere, 2006, 65, 1831-1835.	4.2	2
448	Unique interplay between Zn ²⁺ and nZnO determined the dynamic cellular stress in zebrafish cells. Environmental Science: Nano, 2021, 8, 2324-2335.	2.2	2
449	Influences of metal concentration in phytoplankton and seawater on metal assimilation and elimination in marine copepods. , 2001, 20, 1067.		2
450	Contamination of marine molluscs with heavy metals. , 2012, , 535-551.		1

#	ARTICLE	IF	CITATIONS
451	Influences of different Fe sources on Fe bioavailability and homeostasis in SD rats. Animal Science Journal, 2019, 90, 1377-1387.	0.6	1
452	Transducin β-like 1 X-linked receptor 1 (TBLR1) affects RGNNV infection through negative regulation of interferon immune response in orange-spotted grouper, Epinephelus coioides. Fish and Shellfish Immunology, 2019, 89, 76-82.	1.6	1
453	Real-Time 3D Framework Tracing of Extracellular Polymeric Substances by an AIE-Active Nanoprobe. ACS Sensors, 2021, 6, 4206-4216.	4.0	1
454	Water Analysis: Seawater—Inorganic Compounds for the Environmental Analysis. , 2018, , 353-353.		0
455	BENZO[a]PYRENE ABSORPTION AND EXPOSURE PATHWAYS IN THE GREEN MUSSEL PERNA VIRIDIS. Environmental Toxicology and Chemistry, 2002, 21, 451.	2.2	0
456	Importance of waterborne cadmium and zinc accumulation in the suspension-feeding amphioxus Branchiostoma belcheri. Aquatic Biology, 2012, 16, 137-147.	0.5	0
457	Trace Metals in Pearl River Estuary Organisms. Estuaries of the World, 2020, , 57-91.	0.1	0
458	Trace Metal Contamination of Seafood from the Pearl River Estuary. Estuaries of the World, 2020, , 93-106.	0.1	0
459	Trace Metals and Ecotoxicological Effects in the Pearl River Estuary. Estuaries of the World, 2020, , 107-117.	0.1	0
460	Trace Metals in the Water Column and Sediments. Estuaries of the World, 2020, , 37-55.	0.1	0
461	Benzo[a]pyrene absorption and exposure pathways in the green mussel Perna viridis. Environmental Toxicology and Chemistry, 2002, 21, 451-8.	2.2	0