
## Esteban Älvarez DÄ;vila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931840/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate. Biotropica, 2022, 54, 309-326.                                                                                | 1.6  | 6         |
| 2  | Aboveground forest biomass varies across continents, ecological zones and successional stages:<br>refined IPCC default values for tropical and subtropical forests. Environmental Research Letters,<br>2022, 17, 014047. | 5.2  | 21        |
| 3  | Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and<br>Biogeography, 2022, 31, 1571-1588.                                                                                  | 5.8  | 17        |
| 4  | Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .                                                                                                                   | 10.3 | 10        |
| 5  | Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological<br>Conservation, 2021, 260, 108849.                                                                                  | 4.1  | 71        |
| 6  | Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.                                                                                                                                                | 12.6 | 165       |
| 7  | Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.                                                                                                              | 12.8 | 62        |
| 8  | Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.                                                                                                                                  | 12.6 | 198       |
| 9  | Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.                                                                       | 3.2  | 57        |
| 10 | The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.                                                                                                                                | 5.8  | 62        |
| 11 | Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 2019, 25, 3609-3624.                                     | 9.5  | 78        |
| 12 | Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.                                                                                      | 7.8  | 32        |
| 13 | Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.                                                                                                   | 27.8 | 371       |
| 14 | Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.                                                                                                                             | 10.3 | 291       |
| 15 | Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While<br>Traits Control Demography. Frontiers in Earth Science, 2019, 7, .                                                       | 1.8  | 19        |
| 16 | Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.                                                                                                                      | 9.5  | 265       |
| 17 | Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2,<br>1906-1917.                                                                                                        | 7.8  | 397       |
| 18 | Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.                                                                                                                                | 4.5  | 143       |

ESTEBAN ÄLVAREZ DÄIVILA

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.                                                                                                                                 | 3.3  | 251       |
| 20 | Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. Carbon<br>Balance and Management, 2017, 12, 1.                                                                                              | 3.2  | 98        |
| 21 | Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science and Policy, 2017, 76, 40-49.                                              | 4.9  | 45        |
| 22 | Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE, 2017, 12, e0171072.                                                           | 2.5  | 67        |
| 23 | CONTENIDO DE CARBONO EN UN BOSQUE DE TIERRA FIRME DEL RESGUARDO NONUYA-VILLAZUL, AMAZONIA<br>COLOMBIANA. Colombia Forestal, 2017, 20, 144.                                                                                         | 0.2  | 1         |
| 24 | Riqueza total de especies de plantas vasculares en un bosque andino de la Cordillera central de<br>Colombia. Revista De Biologia Tropical, 2017, 66, 227.                                                                          | 0.4  | 2         |
| 25 | STRUCTURE AND DIVERSITY OF THE THREE PLANT ASSOCIATIONS IN THE SAN JUAN RIVER DELTA, CHOCÓ, COLOMBIA. Revista Arvore, 2016, 40, 833-843.                                                                                           | 0.5  | 3         |
| 26 | Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.                                                                                                | 2.6  | 43        |
| 27 | Live aboveground carbon stocks in natural forests of Colombia. Forest Ecology and Management, 2016, 374, 119-128.                                                                                                                  | 3.2  | 27        |
| 28 | Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 2016, 353, 1383-1387.                                                                                                            | 12.6 | 490       |
| 29 | Variation in stem mortality rates determines patterns of aboveâ€ground biomass in<br><scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change<br>Biology, 2016, 22, 3996-4013.              | 9.5  | 116       |
| 30 | Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.                                                                                                                                      | 4.9  | 201       |
| 31 | Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 793-797.                              | 7.1  | 161       |
| 32 | Composición y diversidad florÃstica de tres bosques húmedos tropicales de edades diferentes, en El<br>JardÃn Botánico del PacÃfico, municipio de BahÃa Solano, Chocó, Colombia. Revista Biodiversidad<br>Neotropical, 2016, 6, 12. | 0.2  | 4         |
| 33 | Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.                                                                                                                            | 4.1  | 72        |
| 34 | Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.                                                                                                                                           | 12.8 | 214       |
| 35 | Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.                                                                                                                                                           | 27.8 | 796       |
| 36 | Plant dispersal systems in <scp>N</scp> eotropical forests: availability of dispersal agents or<br>availability of resources for constructing zoochorous fruits?. Global Ecology and Biogeography,<br>2015, 24, 203-214.           | 5.8  | 34        |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Large-Scale Patterns of Turnover and Basal Area Change in Andean Forests. PLoS ONE, 2015, 10, e0126594.                                                                                  | 2.5  | 38        |
| 38 | REPRESENTATIVIDAD A ESCALA REGIONAL DE UN INVENTARIO FLORÃ&TICO DETALLADO DE UNA HECTÃREA EN LOS ANDES TROPICALES. Colombia Forestal, 2015, 18, 207.                                     | 0.2  | 0         |
| 39 | Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.                           | 5.8  | 248       |
| 40 | Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. Journal of Plant Ecology, 2014, 7, 145-153.  | 2.3  | 84        |
| 41 | Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.                                                                       | 6.4  | 63        |
| 42 | Rate of tree carbon accumulation increases continuously with tree size. Nature, 2014, 507, 90-93.                                                                                        | 27.8 | 663       |
| 43 | Edaphic controls on ecosystem-level carbon allocation in two contrasting Amazon forests. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1820-1830.                        | 3.0  | 11        |
| 44 | Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.                                                             | 2.4  | 45        |
| 45 | Patrones de frecuencia y abundancia de sistemas de dispersión de plantas en bosques colombianos y su<br>relación con las regiones geográficas del paÃs. Colombia Forestal, 2013, 16, 33. | 0.2  | 7         |
| 46 | Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 2012, 267, 297-308.                                | 3.2  | 182       |
| 47 | Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate.<br>Biogeosciences, 2012, 9, 2203-2246.                                             | 3.3  | 487       |
| 48 | Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.                                                                                    | 3.3  | 373       |
| 49 | Height-diameter allometry of tropical forest trees. Biogeosciences, 2011, 8, 1081-1106.                                                                                                  | 3.3  | 396       |
| 50 | Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.                                                                                               | 7.3  | 487       |
| 51 | Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 2010, 7, 43-55.                                                                                  | 3.3  | 250       |
| 52 | Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 2009, 6, 2759-2778.                                                  | 3.3  | 221       |
| 53 | Branch xylem density variations across the Amazon Basin. Biogeosciences, 2009, 6, 545-568.                                                                                               | 3.3  | 84        |
| 54 | Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?.<br>Global Change Biology, 2009, 15, 2418-2430.                                     | 9.5  | 74        |

| #  | Article                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.                                                                        | 12.6 | 1,443     |
| 56 | The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 2004, 10, 563-591.                                | 9.5  | 436       |
| 57 | A New Genus and Species of Dipterocarpaceae from the Neotropics. I. Introduction, Taxonomy,<br>Ecology, and Distribution. Brittonia, 1995, 47, 225. | 0.2  | 27        |