Mu-Shui Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931694/publications.pdf Version: 2024-02-01

ΜΠ-SΗΠΙ ΠΑΙ

#	Article	IF	CITATIONS
1	Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nature Biotechnology, 2022, 40, 527-538.	17.5	128
2	The SUMOâ€specific protease SENP1 deSUMOylates p53 and regulates its activity. Journal of Cellular Biochemistry, 2021, 122, 189-197.	2.6	15
3	Detection of Post-translational Modifications on MYC. Methods in Molecular Biology, 2021, 2318, 69-85.	0.9	6
4	The deubiquitinase USP36 promotes snoRNP group SUMOylation and is essential for ribosome biogenesis. EMBO Reports, 2021, 22, e50684.	4.5	17
5	Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy. Frontiers in Oncology, 2021, 11, 679445.	2.8	20
6	Molecular Crosstalk Between MYC and HIF in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 590576.	3.7	50
7	Writing and erasing MYC ubiquitination and SUMOylation. Genes and Diseases, 2019, 6, 359-371.	3.4	55
8	Deregulating MYC in a model of HER2+ breast cancer mimics human intertumoral heterogeneity. Journal of Clinical Investigation, 2019, 130, 231-246.	8.2	31
9	microRNAâ€130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZOâ€1. Journal of Cellular Biochemistry, 2018, 119, 4945-4956.	2.6	67
10	The ubiquitin-specific protease USP36 is a conserved histone H2B deubiquitinase. Biochemical and Biophysical Research Communications, 2018, 495, 2363-2368.	2.1	24
11	GFZF, a Glutathione <i>S</i> -Transferase Protein Implicated in Cell Cycle Regulation and Hybrid Inviability, Is a Transcriptional Coactivator. Molecular and Cellular Biology, 2018, 38, .	2.3	12
12	Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/AR-targeted therapy. Nature Communications, 2018, 9, 4972.	12.8	40
13	SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10983-10988.	7.1	59
14	Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes and Development, 2018, 32, 1398-1419.	5.9	52
15	Abstract 3536: SENP1 is a p53 deSUMOylating enzyme and its depletion induces p53 activity. , 2018, , .		0
16	ΔN-ASPP2, a novel isoform of the ASPP2 tumor suppressor, promotes cellular survival. Biochemical and Biophysical Research Communications, 2017, 482, 1271-1277.	2.1	12
17	RHEB1 insufficiency in aged male mice is associated with stress-induced seizures. GeroScience, 2017, 39, 557-570.	4.6	9
18	Otub1 stabilizes MDMX and promotes its proapoptotic function at the mitochondria. Oncotarget, 2017, 8, 11053-11062.	1.8	29

Mu-Shui Dai

#	Article	IF	CITATIONS
19	p73 to the rescue: Role of RPL26. Oncotarget, 2017, 8, 5641-5642.	1.8	О
20	Abstract LB-322:MicroRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1. , 2017, , .		0
21	Ribosomal protein L4 is a novel regulator of the MDM2-p53 loop. Oncotarget, 2016, 7, 16217-16226.	1.8	38
22	The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proceedings of the United States of America, 2015, 112, 3734-3739.	7.1	160
23	Deubiquitinating c-Myc: USP36 steps up in the nucleolus. Cell Cycle, 2015, 14, 3786-3793.	2.6	31
24	Identification and Characterization of Nuclear and Nucleolar Localization Signals in the Adeno-Associated Virus Serotype 2 Assembly-Activating Protein. Journal of Virology, 2015, 89, 3038-3048.	3.4	32
25	MicroRNA-130a associates with ribosomal protein L11 to suppress c-Myc expression in response to UV irradiation. Oncotarget, 2015, 6, 1101-1114.	1.8	24
26	Abstract LB-074: The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. , 2015, , .		1
27	Monoubiquitination Is Critical for Ovarian Tumor Domain-containing Ubiquitin Aldehyde Binding Protein 1 (Otub1) to Suppress UbcH5 Enzyme and Stabilize p53 Protein. Journal of Biological Chemistry, 2014, 289, 5097-5108.	3.4	45
28	Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell and Melanoma Research, 2014, 27, 801-812.	3.3	20
29	Deubiquitinating enzyme regulation of the p53 pathway: A lesson from Otub1. World Journal of Biological Chemistry, 2014, 5, 75-84.	4.3	35
30	Abstract LB-308: Monoubiquitination is critical for Otub1 to suppress UbcH5 and stabilize p53. , 2014, , .		0
31	Targeting the Ubiquitin-Mediated Proteasome Degradation of p53 for Cancer Therapy. Current Pharmaceutical Design, 2013, 19, 3248-3262.	1.9	47
32	Ubiquitin- and MDM2 E3 Ligase-independent Proteasomal Turnover of Nucleostemin in Response to GTP Depletion. Journal of Biological Chemistry, 2012, 287, 10013-10020.	3.4	19
33	Physical and Functional Interaction between Ribosomal Protein L11 and the Tumor Suppressor ARF. Journal of Biological Chemistry, 2012, 287, 17120-17129.	3.4	29
34	Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO Journal, 2012, 31, 576-592.	7.8	170
35	HIF1α Protein Stability Is Increased by Acetylation at Lysine 709. Journal of Biological Chemistry, 2012, 287, 35496-35505.	3.4	123
36	Ribosomal Protein L11 Recruits miR-24/miRISC To Repress c-Myc Expression in Response to Ribosomal Stress. Molecular and Cellular Biology, 2011, 31, 4007-4021.	2.3	95

Mu-Shui Dai

#	Article	IF	CITATIONS
37	Interplay between Ribosomal Protein S27a and MDM2 Protein in p53 Activation in Response to Ribosomal Stress. Journal of Biological Chemistry, 2011, 286, 22730-22741.	3.4	86
38	Abstract 3087: Regulation of p53 stability and activity by ribosomal protein S27a. , 2011, , .		2
39	Ribosomal Protein L11 Associates with c-Myc at 5 S rRNA and tRNA Genes and Regulates Their Expression. Journal of Biological Chemistry, 2010, 285, 12587-12594.	3.4	52
40	Perturbation of 60 S Ribosomal Biogenesis Results in Ribosomal Protein L5- and L11-dependent p53 Activation. Journal of Biological Chemistry, 2010, 285, 25812-25821.	3.4	73
41	Ribosomal protein L11 associates with c-Myc at 5 S rRNA and tRNA genes and regulates their expression Journal of Biological Chemistry, 2010, 285, 39574.	3.4	0
42	Inhibition of c-Myc activity by ribosomal protein L11. EMBO Journal, 2009, 28, 993-993.	7.8	1
43	Crosstalk between câ€Myc and ribosome in ribosomal biogenesis and cancer. Journal of Cellular Biochemistry, 2008, 105, 670-677.	2.6	113
44	Mycophenolic Acid Activation of p53 Requires Ribosomal Proteins L5 and L11. Journal of Biological Chemistry, 2008, 283, 12387-12392.	3.4	101
45	Aberrant Expression of Nucleostemin Activates p53 and Induces Cell Cycle Arrest via Inhibition of MDM2. Molecular and Cellular Biology, 2008, 28, 4365-4376.	2.3	155
46	p53 Tumor Suppressor Opens Gateways for Cancer Therapy. , 2008, , .		0
47	5-Fluorouracil Activation of p53 Involves an MDM2-Ribosomal Protein Interaction. Journal of Biological Chemistry, 2007, 282, 8052-8059.	3.4	178
48	Feedback Regulation of c-Myc by Ribosomal Protein L11. Cell Cycle, 2007, 6, 2735-2741.	2.6	55
49	Inhibition of c-Myc activity by ribosomal protein L11. EMBO Journal, 2007, 26, 3332-3345.	7.8	168
50	Balance of Yin and Yang: Ubiquitylation-Mediated Regulation of p53 and c-Myc. Neoplasia, 2006, 8, 630-644.	5.3	75
51	14-3-3γ binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation. EMBO Journal, 2006, 25, 1207-1218.	7.8	113
52	Regulation of the MDM2-p53 Pathway by Ribosomal Protein L11 Involves a Post-ubiquitination Mechanism. Journal of Biological Chemistry, 2006, 281, 24304-24313.	3.4	108
53	Ribosomal Stress Couples the Unfolded Protein Response to p53-dependent Cell Cycle Arrest. Journal of Biological Chemistry, 2006, 281, 30036-30045.	3.4	105
54	Nucleophosmin Is Essential for Ribosomal Protein L5 Nuclear Export. Molecular and Cellular Biology, 2006, 26, 3798-3809.	2.3	191

Ми-Ѕниі Даі

#	Article	IF	CITATIONS
55	Ribosomal Protein L23 Activates p53 by Inhibiting MDM2 Function in Response to Ribosomal Perturbation but Not to Translation Inhibition. Molecular and Cellular Biology, 2004, 24, 7654-7668.	2.3	444
56	SSRP1 functions as a co-activator of the transcriptional activator p63. EMBO Journal, 2004, 23, 1679-1679.	7.8	1
57	Inhibition of MDM2-mediated p53 Ubiquitination and Degradation by Ribosomal Protein L5. Journal of Biological Chemistry, 2004, 279, 44475-44482.	3.4	464
58	Identification and characterization of a novel Drosophila melanogaster glutathione S-transferase-containing FLYWCH zinc finger protein. Gene, 2004, 342, 49-56.	2.2	17
59	MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO Journal, 2003, 22, 6365-6377.	7.8	180
60	MDM2 Inhibits PCAF (p300/CREB-binding Protein-associated Factor)-mediated p53 Acetylation. Journal of Biological Chemistry, 2002, 277, 30838-30843.	3.4	75
61	The Effects of the Fanconi Anemia Zinc Finger (FAZF) on Cell Cycle, Apoptosis, and Proliferation Are Differentiation Stage-specific. Journal of Biological Chemistry, 2002, 277, 26327-26334.	3.4	33
62	SSRP1 functions as a co-activator of the transcriptional activator p63. EMBO Journal, 2002, 21, 5487-5497.	7.8	81
63	An expansion phase precedes terminal erythroid differentiation of hematopoietic progenitor cells from cord blood in vitro and is associated with up-regulation of cyclin E and cyclin-dependent kinase 2. Blood, 2000, 96, 3985-3987.	1.4	29
64	Enhancing effects of co-transduction of both human erythropoietin receptor and c-kitcDNAs into hematopoietic stem/progenitor cells from cord blood on proliferation and differentiation of erythroid progenitors. Cytokines, Cellular & Molecular Therapy, 2000, 6, 1-8.	0.3	4
65	Differentially Expressed Genes During In Vitro Differentiation of Murine Embryonic Stem Cells Transduced with a Human Erythropoietin Receptor cDNA. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 651-658.	1.8	17
66	Co-transduction of cDNAs forc-kitand Steel Factor into Single CD34+Cord Blood Cells Further Enhances the Growth of Erythroid and Multipotential Progenitors. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 813-825.	1.8	7
67	Introduction of human erythropoietin receptor complementary DNA by retrovirus-mediated gene transfer into murine embryonic stem cells enhances erythropoiesis in developing embryoid bodies. Biology of Blood and Marrow Transplantation, 2000, 6, 395-407.	2.0	5
68	An expansion phase precedes terminal erythroid differentiation of hematopoietic progenitor cells from cord blood in vitro and is associated with up-regulation of cyclin E and cyclin-dependent kinase 2. Blood, 2000, 96, 3985-3987.	1.4	1