
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conditional deletion of SMN in cell culture identifies functional SMN alleles. Human Molecular Genetics, 2021, 29, 3477-3492.	1.4	9
2	Intragenic complementation of amino and carboxy terminal SMN missense mutations can rescue Smn null mice. Human Molecular Genetics, 2021, 29, 3493-3503.	1.4	4
3	Early Inflammation in Muscular Dystrophy Differs between Limb and Respiratory Muscles and Increases with Dystrophic Severity. American Journal of Pathology, 2021, 191, 730-747.	1.9	13
4	Voluntary wheel running with and without follistatin overexpression improves NMJ transmission but not motor unit loss in late life of C57BL/6J mice. Neurobiology of Aging, 2021, 101, 285-296.	1.5	5
5	Follistatin-induced muscle hypertrophy in aged mice improves neuromuscular junction innervation and function. Neurobiology of Aging, 2021, 104, 32-41.	1.5	11
6	What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. International Journal of Molecular Sciences, 2021, 22, 8494.	1.8	6
7	Persistent neuromuscular junction transmission defects in adults with spinal muscular atrophy treated with nusinersen. BMJ Neurology Open, 2021, 3, e000164.	0.7	16
8	Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic â^†7SMA mice. Neurobiology of Disease, 2021, 159, 105488.	2.1	14
9	Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nature Medicine, 2021, 27, 1701-1711.	15.2	49
10	244th ENMC international workshop: Newborn screening in spinal muscular atrophy May 10–12, 2019, Hoofdorp, The Netherlands. Neuromuscular Disorders, 2020, 30, 93-103.	0.3	55
11	Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype. Human Genetics, 2019, 138, 241-256.	1.8	57
12	Muscle strength and size are associated with motor unit connectivity in aged mice. Neurobiology of Aging, 2018, 67, 128-136.	1.5	74
13	Mild SMN missense alleles are only functional in the presence of SMN2 in mammals. Human Molecular Genetics, 2018, 27, 3404-3416.	1.4	15
14	IP 853. AVXS-101 Phase-1-Gene Therapy Clinical Trial in SMA Type 1: Event-Free Survival and Achievement of Developmental Milestones. Neuropediatrics, 2018, 49, .	0.3	0
15	SMN Blood Levels in a Porcine Model of Spinal Muscular Atrophy. Journal of Neuromuscular Diseases, 2017, 4, 59-66.	1.1	9
16	Facilitating orphan drug development: Proceedings of the TREAT-NMD International Conference, December 2015, Washington, DC, USA. Neuromuscular Disorders, 2017, 27, 693-701.	0.3	1
17	Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. New England Journal of Medicine, 2017, 377, 1713-1722.	13.9	1,642
18	AVXS-101 Phase 1 gene therapy clinical trial in SMA Type 1: Interim data demonstrates improvements in supportive care use. European Journal of Paediatric Neurology, 2017, 21, e14.	0.7	4

ARTHUR H M BURGHES

#	Article	IF	CITATIONS
19	Natural history of infantileâ€onset spinal muscular atrophy. Annals of Neurology, 2017, 82, 883-891.	2.8	276
20	Variable phenotypic expression and onset in MYH14 distal hereditary motor neuropathy phenotype in a large, multigenerational North American family. Muscle and Nerve, 2017, 56, 341-345.	1.0	11
21	Spinal Muscular Atrophy. , 2017, , .		1
22	The neuromuscular impact of symptomatic SMN restoration in a mouse model of spinal muscular atrophy. Neurobiology of Disease, 2016, 87, 116-123.	2.1	42
23	Baseline results of the Neuro <scp>NEXT</scp> spinal muscular atrophy infant biomarker study. Annals of Clinical and Translational Neurology, 2016, 3, 132-145.	1.7	106
24	Protective effects of butyrate-based compounds on a mouse model for spinal muscular atrophy. Experimental Neurology, 2016, 279, 13-26.	2.0	25
25	Normalization of Patient-Identified Plasma Biomarkers in SMNΔ7 Mice following Postnatal SMN Restoration. PLoS ONE, 2016, 11, e0167077.	1.1	11
26	A large animal model of spinal muscular atrophy and correction of phenotype. Annals of Neurology, 2015, 77, 399-414.	2.8	114
27	SMN expression is required in motor neurons to rescue electrophysiological deficits in the SMNΔ7 mouse model of SMA. Human Molecular Genetics, 2015, 24, 5524-5541.	1.4	53
28	SMN deficiency disrupts gastrointestinal and enteric nervous system function in mice. Human Molecular Genetics, 2015, 24, 3847-3860.	1.4	44
29	Low levels of Survival Motor Neuron protein are sufficient for normal muscle function in the SMNΔ7 mouse model of SMA. Human Molecular Genetics, 2015, 24, 6160-6173.	1.4	39
30	Improving Single Injection CSF Delivery of AAV9-mediated Gene Therapy for SMA: A Dose–response Study in Mice and Nonhuman Primates. Molecular Therapy, 2015, 23, 477-487.	3.7	217
31	Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the â^†7 SMA Mouse. PLoS ONE, 2015, 10, e0132364.	1.1	41
32	A Novel Approach to Identify Genes Related to FGID. FASEB Journal, 2015, 29, 1002.16.	0.2	0
33	Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 829-832.	3.3	296
34	Electrophysiological biomarkers in spinal muscular atrophy: proof of concept. Annals of Clinical and Translational Neurology, 2014, 1, 34-44.	1.7	55
35	Deletion of atrophy enhancing genes fails to ameliorate the phenotype in a mouse model of spinal muscular atrophy. Neuromuscular Disorders, 2014, 24, 436-444.	0.3	11
36	The effect of diet on the protective action of D156844 observed in spinal muscular atrophy mice. Experimental Neurology, 2014, 256, 1-6.	2.0	15

#	Article	IF	CITATIONS
37	The motor neuron response to <i>SMN1</i> deficiency in spinal muscular atrophy. Muscle and Nerve, 2014, 50, 457-458.	1.0	2
38	SMA-EUROPE workshop report: opportunities and challenges in developing clinical trials for spinal muscular atrophy in Europe. Orphanet Journal of Rare Diseases, 2013, 8, 44.	1.2	17
39	Spinal muscular atrophy: Development and implementation of potential treatments. Annals of Neurology, 2013, 74, 348-362.	2.8	76
40	Antisense Oligonucleotides for the Treatment of Spinal Muscular Atrophy. Human Gene Therapy, 2013, 24, 489-498.	1.4	74
41	Improved Antisense Oligonucleotide Design to Suppress Aberrant SMN2 Gene Transcript Processing: Towards a Treatment for Spinal Muscular Atrophy. PLoS ONE, 2013, 8, e62114.	1.1	63
42	A Role for SMN Exon 7 Splicing in the Selective Vulnerability of Motor Neurons in Spinal Muscular Atrophy. Molecular and Cellular Biology, 2012, 32, 126-138.	1.1	98
43	A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Human Molecular Genetics, 2012, 21, 1625-1638.	1.4	226
44	The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy. Human Molecular Genetics, 2012, 21, 2745-2758.	1.4	57
45	Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nature Biotechnology, 2011, 29, 824-828.	9.4	696
46	Generation and Characterization of a genetic zebrafish model of SMA carrying the human SMN2gene. Molecular Neurodegeneration, 2011, 6, 24.	4.4	41
47	Temporal requirement for high SMN expression in SMA mice. Human Molecular Genetics, 2011, 20, 3578-3591.	1.4	118
48	Systemic Gene Delivery in Large Species for Targeting Spinal Cord, Brain, and Peripheral Tissues for Pediatric Disorders. Molecular Therapy, 2011, 19, 1971-1980.	3.7	290
49	A genetic model of amyotrophic lateral sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease. DMM Disease Models and Mechanisms, 2010, 3, 652-662.	1.2	130
50	Antisense oligonucleotides and spinal muscular atrophy: skipping along: Figure 1 Genes and Development, 2010, 24, 1574-1579.	2.7	33
51	Early heart failure in the SMNΔ7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Human Molecular Genetics, 2010, 19, 3895-3905.	1.4	192
52	Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy. Human Molecular Genetics, 2010, 19, 454-467.	1.4	110
53	A SMN missense mutation complements SMN2 restoring snRNPs and rescuing SMA mice. Human Molecular Genetics, 2009, 18, 2215-2229.	1.4	97
54	Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?. Nature Reviews Neuroscience, 2009, 10, 597-609.	4.9	632

#	Article	IF	CITATIONS
55	A Positive Modifier of Spinal Muscular Atrophy in the SMN2 Gene. American Journal of Human Genetics, 2009, 85, 408-413.	2.6	253
56	The SMN binding protein gemin2 is not involved in motor axon outgrowth. Developmental Neurobiology, 2008, 68, 182-194.	1.5	37
57	Other forms of survival motor neuron protein and spinal muscular atrophy: An opinion. Neuromuscular Disorders, 2008, 18, 82-83.	0.3	5
58	Synthesis and Biological Evaluation of Novel 2,4-Diaminoquinazoline Derivatives as <i>SMN2</i> Promoter Activators for the Potential Treatment of Spinal Muscular Atrophy. Journal of Medicinal Chemistry, 2008, 51, 449-469.	2.9	88
59	Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Human Molecular Genetics, 2008, 17, 1063-1075.	1.4	199
60	Embryonic motor axon development in the severe SMA mouse. Human Molecular Genetics, 2008, 17, 2900-2909.	1.4	136
61	Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Human Molecular Genetics, 2008, 17, 52-70.	1.4	76
62	Let all DNA vote. Neurology, 2008, 70, 662-663.	1.5	3
63	The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn / mice and results in a mouse with spinal muscular atrophy. Human Molecular Genetics, 2007, 16, 2648-2648.	1.4	1
64	Ribonucleoprotein Assembly Defects Correlate with Spinal Muscular Atrophy Severity and Preferentially Affect a Subset of Spliceosomal snRNPs. PLoS ONE, 2007, 2, e921.	1.1	266
65	Protein- and mRNA-based phenotype-genotype correlations in DMD/BMD with point mutations and molecular basis for BMD with nonsense and frameshift mutations in the DMD gene. Human Mutation, 2007, 28, 183-195.	1.1	107
66	A novel method for oral delivery of drug compounds to the neonatal SMNΔ7 mouse model of spinal muscular atrophy. Journal of Neuroscience Methods, 2007, 161, 285-290.	1.3	37
67	Absence of gemin5 from SMN complexes in nuclear Cajal bodies. BMC Cell Biology, 2007, 8, 28.	3.0	44
68	Abnormal motor phenotype in the SMNΔ7 mouse model of spinal muscular atrophy. Neurobiology of Disease, 2007, 27, 207-219.	2.1	96
69	Survival Motor Neuron Function in Motor Axons Is Independent of Functions Required for Small Nuclear Ribonucleoprotein Biogenesis. Journal of Neuroscience, 2006, 26, 11014-11022.	1.7	156
70	Dystrophin glycoprotein complex dysfunction: A regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell, 2005, 8, 421-432.	7.7	260
71	SMNΔ7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Human Molecular Genetics, 2005, 14, 845-857.	1.4	550
72	Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Human Molecular Genetics, 2005, 14, 2003-2018.	1.4	143

ARTHUR H M BURGHES

#	Article	IF	CITATIONS
73	A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells. Experimental Cell Research, 2005, 309, 185-197.	1.2	118
74	Identification of a Novel Cyclic AMP-response Element (CRE-II) and the Role of CREB-1 in the cAMP-induced Expression of the Survival Motor Neuron (SMN) Gene. Journal of Biological Chemistry, 2004, 279, 14803-14811.	1.6	52
75	Indoprofen Upregulates the Survival Motor Neuron Protein through a Cyclooxygenase-Independent Mechanism. Chemistry and Biology, 2004, 11, 1489-1493.	6.2	135
76	Perspectives on models of spinal muscular atrophy for drug discovery. Drug Discovery Today: Disease Models, 2004, 1, 151-156.	1.2	13
77	Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. Journal of Clinical Investigation, 2004, 114, 1726-1731.	3.9	183
78	Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Annals of Neurology, 2003, 54, 647-654.	2.8	269
79	A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. Journal of Cell Biology, 2003, 160, 41-52.	2.3	140
80	Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. Journal of Cell Biology, 2003, 162, 919-932.	2.3	387
81	Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genetics in Medicine, 2002, 4, 20-26.	1.1	296
82	Expression of the survival of motor neuron (SMN) gene in primary neurons and increase in SMN levels by activation of the N-methyl-D-aspartate glutamate receptor. Neurogenetics, 2002, 4, 29-36.	0.7	16
83	Spinal muscular atrophies. Advances in Neurology, 2002, 88, 83-98.	0.8	4
84	Nuclear Gems and Cajal (Coiled) Bodies in Fetal Tissues: Nucleolar Distribution of the Spinal Muscular Atrophy Protein, SMN. Experimental Cell Research, 2001, 265, 252-261.	1.2	126
85	Hybrids monosomal for human chromosome 5 reveal the presence of a spinal muscular atrophy (SMA) carrier with two SMN1 copies on one chromosome. Human Genetics, 2001, 108, 109-115.	1.8	38
86	GENETICS: The Land Between Mendelian and Multifactorial Inheritance. Science, 2001, 293, 2213-2214.	6.0	72
87	Genomic organization and alternative splicing of the human and mouse RPTPϕgenes. BMC Genomics, 2001, 2, 1.	1.2	21
88	Use of western immunoblot for evaluation of myocardial dystrophin, -sarcoglycan, and -dystroglycan in dogs with idiopathic dilated cardiomyopathy. American Journal of Veterinary Research, 2001, 62, 67-71.	0.3	8
89	The survival motor neuron (SMN) protein: effect of exon loss and mutation on protein localization. Neurogenetics, 2000, 3, 7-16.	0.7	35
90	The Relationship between SMN, the Spinal Muscular Atrophy Protein, and Nuclear Coiled Bodies in Differentiated Tissues and Cultured Cells. Experimental Cell Research, 2000, 256, 365-374.	1.2	183

#	Article	IF	CITATIONS
91	Identification of survival motor neuron as a transcriptional activator-binding protein. Human Molecular Genetics, 1999, 8, 1219-1226.	1.4	98
92	Analysis of mutations in the tudor domain of the survival motor neuron protein SMN. European Journal of Human Genetics, 1999, 7, 519-525.	1.4	24
93	Promoter analysis of the human centromeric and telomeric survival motor neuron genes (SMNC and) Tj ETQq1 1	0.784314 2.4	rgBT /Overlo
94	A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Human Molecular Genetics, 1999, 8, 1177-1183.	1.4	806
95	Genomic Organization and Biological Characterization of the Novel Human CC Chemokine DC-CK-1/PARC/MIP-4/SCYA18. Genomics, 1999, 56, 296-302.	1.3	45
96	SMN oligomerization defect correlates with spinal muscular atrophy severity. Nature Genetics, 1998, 19, 63-66.	9.4	470
97	Novel receptor protein tyrosine phosphatase (RPTP?) and acidic fibroblast growth factor (FGF-1) transcripts delineate a rostrocaudal boundary in the granule cell layer of the murine cerebellar cortex. , 1998, 391, 444-455.		33
98	Identification and characterization of RPTPÏ; a novel RPTPμ/κ-like receptor protein tyrosine phosphatase whose expression is restricted to the central nervous system. Molecular Brain Research, 1998, 56, 9-21.	2.5	26
99	Reply to Mackenzie. American Journal of Human Genetics, 1998, 62, 486-488.	2.6	0
100	DAX1 Mutations Map to Putative Structural Domains in a Deduced Three-Dimensional Model. American Journal of Human Genetics, 1998, 62, 855-864.	2.6	91
101	Intragenic telSMN Mutations: Frequency, Distribution, Evidence of a Founder Effect, and Modification of the Spinal Muscular Atrophy Phenotype by cenSMN Copy Number. American Journal of Human Genetics, 1998, 63, 1712-1723.	2.6	168
102	The survival motor neuron protein in spinal muscular atrophy. Human Molecular Genetics, 1997, 6, 1205-1214.	1.4	604
103	When Is a Deletion Not a Deletion? When It Is Converted. American Journal of Human Genetics, 1997, 61, 9-15.	2.6	254
104	Identification of Proximal Spinal Muscular Atrophy Carriers and Patients by Analysis of SMNT and SMNC Gene Copy Number. American Journal of Human Genetics, 1997, 60, 1411-1422.	2.6	494
105	Molecular diagnosis of non-deletion SMA patients using quantitative PCR of SMN exon 7. Neurogenetics, 1997, 1, 141-147.	0.7	54
106	Deletion and conversion in spinal muscular atrophy patients: Is there a relationship to severity?. Annals of Neurology, 1997, 41, 230-237.	2.8	98
107	Nonsense mutations in a Becker muscular dystrophy and an intermediate patient. , 1996, 7, 72-75.		10
108	An 11 base pair duplication in exon 6 of the SMN gene produces a type I spinal muscular atrophy (SMA) phenotype: further evidence for SMN as the primary SMA-determining gene. Human Molecular Genetics, 1996, 5, 1727-1732.	1.4	123

#	Article	IF	CITATIONS
109	A novel cDNA detects homozygous microdeletions in greater than 50% of type I spinal muscular atrophy patients. Nature Genetics, 1995, 9, 56-62.	9.4	83
110	Myoblast Transfer in the Treatment of Duchenne's Muscular Dystrophy. New England Journal of Medicine, 1995, 333, 832-838.	13.9	489
111	Allelic association and deletions in autosomal recessive proximal spinal muscular atrophy: association of marker genotype with disease severity and candidate cDNAs. Human Molecular Genetics, 1995, 4, 1273-1284.	1.4	101
112	Refined physical map of the spinal muscular atrophy gene (SMA) region at 5q13 based on YAC and cosmid contiguous arrays. Genomics, 1995, 26, 451-460.	1.3	39
113	Mapping of the Spinal Muscular Atrophy (SMA) Gene to a 750-kb Interval Flanked by Two New Microsatellites. European Journal of Human Genetics, 1995, 3, 56-60.	1.4	19
114	Identification of a missense mutation, single base deletion and a polymorphism in the dystrophin exon 16. Human Molecular Genetics, 1994, 3, 1173-1174.	1.4	11
115	Linkage mapping of the spinal muscular atrophy gene. Human Genetics, 1994, 93, 305-312.	1.8	43
116	A Multicopy Dinucleotide Marker That Maps Close to the Spinal Muscular Atrophy Gene. Genomics, 1994, 21, 394-402.	1.3	54
117	A YAC Contig of the Region Containing the Spinal Muscular Atrophy Gene (SMA): Identification of an Unstable Region. Genomics, 1994, 24, 351-356.	1.3	45
118	Two 5q13 simple tandem repeat loci are in linkage disequilibrium with Type 1 spinal muscular atrophy. Human Molecular Genetics, 1994, 3, 1951-1956.	1.4	35
119	Gene therapy for muscle diseases. Current Opinion in Neurology, 1994, 7, 463-470.	1.8	8
120	Immunohistochemical analysis of dystrophin-associated proteins in Becker/Duchenne muscular dystrophy with huge in-frame deletions in the NH2-terminal and rod domains of dystrophin Journal of Clinical Investigation, 1994, 93, 99-105.	3.9	46
121	Exon 44 nonsense mutation in two-duchenne muscular dystrophy brothers detected by heteroduplex analysis. Human Mutation, 1993, 2, 192-195.	1.1	20
122	A missense mutation in the dystrophin gene in a Duchenne muscular dystrophy patient. Nature Genetics, 1993, 4, 357-360.	9.4	77
123	Gene delivery to spinal motor neurons. Brain Research, 1993, 606, 126-129.	1.1	25
124	The role of the dystrophin-glycoprotein complex in the molecular pathogenesis of muscular dystrophies. Neuromuscular Disorders, 1993, 3, 533-535.	0.3	51
125	Characterization of translational frame exception patients in Duchenne/Becker muscular dystrophy. Human Molecular Genetics, 1993, 2, 737-744.	1.4	89
126	Identification of two point mutations and a one base deletion in exon 19 of the dystrophin gene by heteroduplex formation. Human Molecular Genetics, 1993, 2, 311-313.	1.4	46

#	Article	IF	CITATIONS
127	Identification of a 2 base pair nonsense mutation causing a cryptic splice site in a DMD patient. Human Molecular Genetics, 1992, 1, 645-646.	1.4	32
128	A HindIII/BglII dystrophin gene polymorphism in the African-American population. Human Genetics, 1992, 89, 687-8.	1.8	4
129	Physical mapping at a potential X-linked retinitis pigmentosa locus (RP3) by pulsed-field gel electrophoresis. Genomics, 1991, 11, 263-272.	1.3	21
130	Linkage analysis of a large Latin-American family with X-linked retinitis pigmentosa and metallic sheen in the heterozygote carrier. Genomics, 1989, 4, 601-605.	1.3	15
131	Mapping of four translocation breakpoints within the Duchenne muscular dystrophy gene. Genomics, 1989, 4, 101-104.	1.3	16
132	The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature, 1988, 333, 466-469.	13.7	650
133	Frame-shift deletions in patients with Duchenne and Becker muscular dystrophy. Science, 1988, 242, 755-759.	6.0	280
134	Duchenne muscular dystrophy gene expression in normal and diseased human muscle. Science, 1988, 239, 1418-1420.	6.0	60
135	Molecular Genetics of Duchenne and Becker Muscular Dystrophy. International Review of Neurobiology, 1988, 29, 1-76.	0.9	17
136	A cDNA clone from the Duchenne/Becker muscular dystrophy gene. Nature, 1987, 328, 434-437.	13.7	280
137	Comparison of focusing in buffers and synthetic carrier ampholytes for use in the first dimension of two dimensional polyacrylamide gel electrophoresis. Electrophoresis, 1985, 6, 453-461.	1.3	11
138	High resolution two-dimensional polyacrylamide gel electrophoresis. I. Methodological procedures. Electrophoresis, 1983, 4, 97-116.	1.3	128
139	High resolution two-dimensional polyacrylamide gel electrophoresis. II. Analysis and applications. Electrophoresis, 1983, 4, 173-189.	1.3	62
140	High resolution two-dimensional polyacrylamide gel electrophoresis. TrAC - Trends in Analytical Chemistry, 1983, 2, 211-214.	5.8	5
141	Isolation and characterization of a mutant liver aldolase in adult hereditary fructose intolerance. Identification of the enzyme variant by radioassay in tissue biopsy specimens. Journal of Clinical Investigation, 1983, 72, 201-213.	3.9	19
142	Analysis of skin fibroblast proteins in Duchenne muscular dystrophy: 1. Sodium dodecyl sulphate polyacrylamide gel electrophoresis. Electrophoresis, 1982, 3, 177-185.	1.3	16
143	Analysis of skin fibroblast proteins in Duchenne muscular dystrophy: 2. Isoelectric focusing under dissociating conditions. Electrophoresis, 1982, 3, 185-196.	1.3	19
144	Improvements of isoelectric focusing in agarose for direct tissue isoelectric focusing. Electrophoresis, 1982, 3, 307-314.	1.3	18

#	Article	IF	CITATIONS
145	Enhancement of resolution in two-dimensional gel electrophoresis and simultaneous resolution of acidic and basic proteins. Electrophoresis, 1982, 3, 354-363.	1.3	49
146	Erythrocyte membrane (Ca2+ + Mg2+)-activated adenosine triphosphatase in Duchenne muscular dystrophy. Biochemical Society Transactions, 1981, 9, 81-82.	1.6	1
147	Polyacrylamide-gel-electrophoretic analysis of cultured skin fibroblasts from patients with Duchenne muscular dystrophy. Biochemical Society Transactions, 1981, 9, 118-119.	1.6	3
148	The application of direct tissue isoelectric focusing to the study of human skeletal muscle. Electrophoresis, 1981, 2, 251-258.	1.3	17
149	Erythrocyte ghost Na+, K+-adenosine triphosphatase in Duchenne muscular dystrophy. Journal of the Neurological Sciences, 1980, 46, 209-220.	0.3	9