
Chunfeng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nature Communications, 2016, 7, 13651.	5.8	917
2	Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4, 864-873.	19.8	736
3	All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603, 73-78.	13.7	544
4	All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 2020, 5, 870-880.	19.8	497
5	Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. Journal of the American Chemical Society, 2016, 138, 3761-3768.	6.6	496
6	Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nature Communications, 2020, 11, 2726.	5.8	467
7	A Wellâ€Mixed Phase Formed by Two Compatible Nonâ€Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Advanced Materials, 2021, 33, e2101733.	11.1	354
8	High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor. Journal of the American Chemical Society, 2020, 142, 1465-1474.	6.6	344
9	Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy and Environmental Science, 2022, 15, 2537-2544.	15.6	311
10	9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. Journal of the American Chemical Society, 2017, 139, 5085-5094.	6.6	303
11	Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters. ACS Nano, 2015, 9, 12410-12416.	7.3	297
12	Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4602-4610.	2.1	288
13	Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nature Communications, 2019, 10, 1088.	5.8	271
14	Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nature Communications, 2019, 10, 519.	5.8	231
15	Charge Separation from an Intra-Moiety Intermediate State in the High-Performance PM6:Y6 Organic Photovoltaic Blend. Journal of the American Chemical Society, 2020, 142, 12751-12759.	6.6	228
16	Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2017, 29, 1703344.	11.1	209
17	Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nature Communications, 2019, 10, 4247.	5.8	199
18	All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%. Chemistry of Materials, 2017, 29, 7543-7553.	3.2	184

#	Article	IF	CITATIONS
19	Nearâ€Bandâ€Edge Electroluminescence from Heavyâ€Metalâ€Free Colloidal Quantum Dots. Advanced Materials, 2011, 23, 3553-3558.	11.1	180
20	Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy and Environmental Science, 2020, 13, 5017-5027.	15.6	170
21	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie - International Edition, 2018, 57, 13277-13282.	7.2	166
22	Rational Tuning of Molecular Interaction and Energy Level Alignment Enables Highâ€Performance Organic Photovoltaics. Advanced Materials, 2019, 31, e1904215.	11.1	162
23	Achieving Fast Charge Separation and Low Nonradiative Recombination Loss by Rational Fluorination for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2019, 31, e1905480.	11.1	162
24	Single-Crystalline, Ultrathin ZnGa ₂ O ₄ Nanosheet Scaffolds To Promote Photocatalytic Activity in CO ₂ Reduction into Methane. ACS Applied Materials & Interfaces, 2014, 6, 2356-2361.	4.0	151
25	Single-Particle Spectroscopic Measurements of Fluorescent Graphene Quantum Dots. ACS Nano, 2013, 7, 10654-10661.	7.3	148
26	Surface Halogen Compensation for Robust Performance Enhancements of CsPbX ₃ Perovskite Quantum Dots. Advanced Optical Materials, 2019, 7, 1900276.	3.6	138
27	Slow Auger Recombination of Charged Excitons in Nonblinking Perovskite Nanocrystals without Spectral Diffusion. Nano Letters, 2016, 16, 6425-6430.	4.5	129
28	Bright-Exciton Fine-Structure Splittings in Single Perovskite Nanocrystals. Physical Review Letters, 2017, 119, 026401.	2.9	129
29	Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nature Communications, 2022, 13, 2369.	5.8	122
30	High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule, 2022, 6, 444-457.	11.7	117
31	Low-threshold two-photon pumped ZnO nanowire lasers. Optics Express, 2009, 17, 7893.	1.7	108
32	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie, 2018, 130, 13461-13466.	1.6	108
33	Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. Nanoscale, 2015, 7, 9771-9778.	2.8	102
34	Oriented and Uniform Distribution of Dion–Jacobson Phase Perovskites Controlled by Quantum Well Barrier Thickness. Solar Rrl, 2019, 3, 1900090.	3.1	102
35	Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells. Joule, 2021, 5, 1832-1844.	11.7	98
36	Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals. Nature Communications, 2019, 10, 1163.	5.8	97

#	Article	IF	CITATIONS
37	A Smallâ€Molecule "Charge Driver―enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13%. Advanced Materials, 2019, 31, e1900111.	11.1	92
38	Ultralow-Threshold and Color-Tunable Continuous-Wave Lasing at Room-Temperature from In Situ Fabricated Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 3248-3253.	2.1	83
39	Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals. Nano Letters, 2018, 18, 2074-2080.	4.5	79
40	Excessive Exoergicity Reduces Singlet Exciton Fission Efficiency of Heteroacenes in Solutions. Journal of the American Chemical Society, 2016, 138, 6739-6745.	6.6	77
41	Phthalimide Polymer Donor Guests Enable over 17% Efficient Organic Solar Cells via Parallelâ€Like Ternary and Quaternary Strategies. Advanced Energy Materials, 2020, 10, 2001436.	10.2	75
42	Ultrafast Channel II process induced by a 3-D texture with enhanced acceptor order ranges for high-performance non-fullerene polymer solar cells. Energy and Environmental Science, 2018, 11, 2569-2580.	15.6	72
43	Enhancing Luminescence and Photostability of CsPbBr ₃ Nanocrystals via Surface Passivation with Silver Complex. Journal of Physical Chemistry C, 2018, 122, 12994-13000.	1.5	72
44	Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires. Applied Physics Letters, 2006, 89, 042117.	1.5	71
45	Feasible D1–A–D2–A Random Copolymers for Simultaneous Highâ€Performance Fullerene and Nonfullerene Solar Cells. Advanced Energy Materials, 2018, 8, 1702166.	10.2	61
46	Nonradiative Triplet Loss Suppressed in Organic Photovoltaic Blends with Fluoridated Nonfullerene Acceptors. Journal of the American Chemical Society, 2021, 143, 4359-4366.	6.6	60
47	Multiphoton route to ZnO nanowire lasers. Optics Letters, 2006, 31, 3345.	1.7	58
48	Magnetic dipolar interaction between correlated triplets created by singlet fission in tetracene crystals. Nature Communications, 2015, 6, 8602.	5.8	56
49	A Covalently Linked Tetracene Trimer: Synthesis and Singlet Exciton Fission Property. Organic Letters, 2017, 19, 580-583.	2.4	56
50	Ultrafast hole transfer mediated by polaron pairs in all-polymer photovoltaic blends. Nature Communications, 2019, 10, 398.	5.8	56
51	De novo design of Au36(SR)24 nanoclusters. Nature Communications, 2020, 11, 3349.	5.8	54
52	Bright Triplet Self-Trapped Excitons to Dopant Energy Transfer in Halide Double-Perovskite Nanocrystals. Nano Letters, 2021, 21, 8671-8678.	4.5	53
53	Waterâ€Assisted Crystal Growth in Quasiâ€2D Perovskites with Enhanced Charge Transport and Photovoltaic Performance. Advanced Energy Materials, 2020, 10, 2001832.	10.2	52
54	Raman spectra of single micrometer-sized tubular ZnO. Materials Chemistry and Physics, 2006, 99, 160-163.	2.0	48

#	Article	IF	CITATIONS
55	Lasing from colloidal InP/ZnS quantum dots. Optics Express, 2011, 19, 5528.	1.7	48
56	Efficient lead acetate sourced planar heterojunction perovskite solar cells with enhanced substrate coverage via one-step spin-coating. Organic Electronics, 2016, 33, 194-200.	1.4	48
57	Ag ₂ Au ₅₀ (PET) ₃₆ Nanocluster: Dimeric Assembly of Au ₂₅ (PET) ₁₈ Enabled by Silver Atoms. Angewandte Chemie - International Edition, 2020, 59, 13941-13946.	7.2	46
58	Free-triplet generation with improved efficiency in tetracene oligomers through spatially separated triplet pair states. Nature Chemistry, 2021, 13, 559-567.	6.6	46
59	Colloidal nanocrystal-based light-emitting diodes fabricated on plastic toward flexible quantum dot optoelectronics. Journal of Applied Physics, 2009, 105, .	1.1	43
60	Observation of two-photon-induced photoluminescence in ZnO microtubes. Applied Physics Letters, 2005, 87, 051920.	1.5	42
61	Two-photon-pumped lasing from colloidal nanocrystal quantum dots. Optics Letters, 2008, 33, 2437.	1.7	41
62	Carrier Multiplication in a Single Semiconductor Nanocrystal. Physical Review Letters, 2016, 116, 106404.	2.9	41
63	Optical Gain from Biexcitons in CsPbBr ₃ Nanocrystals Revealed by Two-dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 1251-1258.	2.1	40
64	Y6 and its derivatives: molecular design and physical mechanism. National Science Review, 2021, 8, nwab121.	4.6	40
65	Quasi-Topotactic Transformation of FeOOH Nanorods to Robust Fe ₂ O ₃ Porous Nanopillars Triggered with a Facile Rapid Dehydration Strategy for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 10141-10146.	4.0	38
66	Insights into constitutional isomeric effects on donor–acceptor intermolecular arrangements in non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18468-18479.	5.2	38
67	FRET excited ratiometric oxygen sensing in living tissue. Journal of Neuroscience Methods, 2013, 214, 45-51.	1.3	36
68	Integration of planar and bulk heterojunctions in polymer/nanocrystal hybrid photovoltaic cells. Applied Physics Letters, 2009, 95, 063510.	1.5	35
69	Oxygen and seizure dynamics: I. Experiments. Journal of Neurophysiology, 2014, 112, 205-212.	0.9	35
70	Quantum Interference in a Single Perovskite Nanocrystal. Nano Letters, 2019, 19, 4442-4447.	4.5	35
71	Singlet exciton fission in a linear tetracene tetramer. Journal of Materials Chemistry C, 2018, 6, 3245-3253.	2.7	34
72	On the understanding of energy loss and device fill factor trade-offs in non-fullerene organic solar cells with varied energy levels. Nano Energy, 2020, 75, 105032.	8.2	34

#	Article	IF	CITATIONS
73	Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals. Scientific Reports, 2016, 6, 30487.	1.6	33
74	Shallow distance-dependent triplet energy migration mediated by endothermic charge-transfer. Nature Communications, 2021, 12, 1532.	5.8	33
75	Ultralow-Threshold Single-Mode Lasing from Phase-Pure CdSe/CdS Core/Shell Quantum Dots. Journal of Physical Chemistry Letters, 2016, 7, 4968-4976.	2.1	32
76	Molecular engineering towards efficientwhite-light-emitting perovskite. Nature Communications, 2021, 12, 4890.	5.8	32
77	Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs. Optics Express, 2012, 20, A333.	1.7	30
78	Synthesis of Bi6Mo2O15 sub-microwires via a molten salt method and enhancing the photocatalytic reduction of CO2 into solar fuel through tuning the surface oxide vacancies by simple post-heating treatment. CrystEngComm, 2013, 15, 9855.	1.3	30
79	Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review. Advanced Photonics, 2020, 2, .	6.2	30
80	Cd-driven surface reconstruction and photodynamics in gold nanoclusters. Chemical Science, 2021, 12, 3290-3294.	3.7	29
81	Photon antibunching in a cluster of giant CdSe/CdS nanocrystals. Nature Communications, 2018, 9, 1536.	5.8	28
82	Carrier multiplication in semiconductor nanocrystals detected by energy transfer to organic dye molecules. Nature Communications, 2012, 3, 1170.	5.8	26
83	Polarization-dependent exciton dynamics in tetracene single crystals. Journal of Chemical Physics, 2014, 141, 244303. Mott behavior in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi< td=""><td>1.2</td><td>26</td></mml:mi<></mml:msub></mml:math>	1.2	26
84	mathvariant="normal">K <mml:mi></mml:mi> 2 <mml:mov><mml:mi>><mml:mi>><mml:mo>2</mml:mo><mml:mo>a^'</mml:mo> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi< th=""> mathvariant="normal">Se</mml:mi<></mml:msub></mml:mi><mml:mo>2</mml:mo></mml:mi></mml:mov>	nml:mi> </td <td>mml:mrow>< 26</td>	mml:mrow>< 26
85	studied by pump-probe spectroscopy. Physical Review B, 2014, 89, . Ultrafast Carrier Dynamics and Efficient Triplet Generation in Black Phosphorus Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 12972-12978.	1.5	26
86	Broadband two-dimensional electronic spectroscopy in an actively phase stabilized pump-probe configuration. Optics Express, 2017, 25, 21115.	1.7	26
87	Lowâ€Threshold Amplified Spontaneous Emission and Lasing from Thickâ€Shell CdSe/CdS Core/Shell Nanoplatelets Enabled by Highâ€Temperature Growth. Advanced Optical Materials, 2020, 8, 1901615.	3.6	26
88	Multiphoton absorption induced amplified spontaneous emission from biocatalyst-synthesized ZnO nanorods. Applied Physics Letters, 2008, 92, 233116.	1.5	25
89	Frequency-upconverted whispering-gallery-mode lasing in ZnO hexagonal nanodisks. Optics Letters, 2009, 34, 3349.	1.7	25
90	Inhomogeneous Biexciton Binding in Perovskite Semiconductor Nanocrystals Measured with Two-Dimensional Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 10173-10181.	2.1	25

#	Article	IF	CITATIONS
91	Large Optical Nonlinearity Induced by Singlet Fission in Pentacene Films. Angewandte Chemie - International Edition, 2015, 54, 6222-6226.	7.2	24
92	Control of Nanomorphology in Fullerene-Free Organic Solar Cells by Lewis Acid Doping with Enhanced Photovoltaic Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 667-677.	4.0	24
93	Highly Efficient 1D/3D Ferroelectric Perovskite Solar Cell. Advanced Functional Materials, 2021, 31, 2100205.	7.8	24
94	Efficient thermal conductance in organometallic perovskite CH3NH3PbI3 films. Applied Physics Letters, 2016, 108, 081902.	1.5	22
95	A dye-free photoelectrochemical solar cell based on BiVO4 with a long lifetime of photogenerated carriers. Electrochemistry Communications, 2012, 22, 49-52.	2.3	21
96	A Comparative Study on Hole Transfer Inversely Correlated with Driving Force in Two Non-Fullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4110-4116.	2.1	21
97	Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes. Applied Physics Letters, 2007, 91, 142109.	1.5	20
98	Broadband Optical Nonâ€linearity Induced by Chargeâ€Transfer Excitons in Typeâ€ll CdSe/ZnTe Nanocrystals. Advanced Materials, 2013, 25, 4397-4402.	11.1	20
99	An integrated artificial photosynthesis system based on peptide nanotubes. Nanoscale, 2014, 6, 7832-7837.	2.8	20
100	Energy Transfer of Biexcitons in a Single Semiconductor Nanocrystal. Nano Letters, 2016, 16, 2492-2496.	4.5	20
101	Size-Dependent Hot Carrier Dynamics in Perovskite Nanocrystals Revealed by Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 238-244.	2.1	20
102	Effects of reduced exciton diffusion in InGaN/GaN multiple quantum well nanorods. Optics Express, 2012, 20, 13478.	1.7	19
103	Excitation dependent two-component spontaneous emission and ultrafast amplified spontaneous emission in dislocation-free InGaN nanowires. Applied Physics Letters, 2013, 102, 091105.	1.5	19
104	Nonlinear Density Dependence of Singlet Fission Rate in Tetracene Films. Journal of Physical Chemistry Letters, 2014, 5, 3462-3467.	2.1	19
105	Intramolecular singlet fission in a face-to-face stacked tetracene trimer. Physical Chemistry Chemical Physics, 2018, 20, 6330-6336.	1.3	19
106	Integration of Fe _x S electrocatalysts and simultaneously generated interfacial oxygen vacancies to synergistically boost photoelectrochemical water splitting of Fe ₂ O ₃ photoanodes. Chemical Communications, 2018, 54, 13817-13820.	2.2	19
107	Direct Z scheme-fashioned photoanode systems consisting of Fe ₂ O ₃ nanorod arrays and underlying thin Sb ₂ Se ₃ layers toward enhanced photoelectrochemical water splitting performance. Nanoscale, 2019, 11, 109-114.	2.8	18
108	Coherent exciton-phonon coupling in perovskite semiconductor nanocrystals studied by two-dimensional electronic spectroscopy. Applied Physics Letters, 2019, 115, .	1.5	18

#	Article	IF	CITATIONS
109	The Impact of Carrier Transport Confinement on the Energy Transfer Between InGaN/GaN Quantumâ€Well Nanorods and Colloidal Nanocrystals. Advanced Functional Materials, 2012, 22, 3146-3152.	7.8	17
110	Two-photon excited photoluminescence of single perovskite nanocrystals. Journal of Chemical Physics, 2019, 151, 154201.	1.2	17
111	Polarized emission from single perovskite FAPbBr3 nanocrystals. Journal of Luminescence, 2020, 221, 117032.	1.5	17
112	Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films. Physica B: Condensed Matter, 2005, 357, 334-339.	1.3	16
113	Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal. Journal of Physics Condensed Matter, 2007, 19, 216202.	0.7	16
114	Energy Transfer from a Single Semiconductor Nanocrystal to Dye Molecules. ACS Nano, 2014, 8, 7060-7066.	7.3	16
115	Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor. Journal of Materials Chemistry A, 2018, 6, 24814-24822.	5.2	16
116	Realization of ultrathin red 2D carbon nitride sheets to significantly boost the photoelectrochemical water splitting performance of TiO2 photoanodes. Chemical Engineering Journal, 2020, 396, 125267.	6.6	16
117	Ultrafast dynamics of photoexcited carriers in perovskite semiconductor nanocrystals. Nanophotonics, 2021, 10, 1943-1965.	2.9	16
118	Frequency upconverted lasing of nanocrystal quantum dots in microbeads. Applied Physics Letters, 2009, 95, 183109.	1.5	15
119	Site-specific sonoporation of human melanoma cells at the cellular level using high lateral-resolution ultrasonic micro-transducer arrays. Biosensors and Bioelectronics, 2011, 27, 25-33.	5.3	15
120	Tuning Spin Dynamics in Crystalline Tetracene. Journal of Physical Chemistry Letters, 2019, 10, 1908-1913.	2.1	15
121	Excitation-tailored dual-color emission of manganese(II)-doped perovskite nanocrystals. Applied Physics Letters, 2019, 114, .	1.5	15
122	Enhanced Hot-Carrier Luminescence in Multilayer Reduced Graphene Oxide Nanospheres. Scientific Reports, 2013, 3, 2315.	1.6	14
123	Singlet Fission Dynamics in Tetracene Single Crystals Probed by Polarization-Dependent Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 10447-10456.	1.1	14
124	Exciton linewidth broadening induced by exciton–phonon interactions in CsPbBr3 nanocrystals. Journal of Chemical Physics, 2021, 154, 214502.	1.2	14
125	Magnetic field effects on singlet fission dynamics. Trends in Chemistry, 2022, 4, 528-539.	4.4	14
126	Ultrafast studies on the energy relaxation dynamics and the concentration dependence in Ag:Bi2O3 nanocomposite films. Chemical Physics Letters, 2005, 413, 162-167.	1.2	13

#	Article	IF	CITATIONS
127	Ultrafast spectroscopy of quasiparticle dynamics in cuprate superconductors. Journal of Magnetism and Magnetic Materials, 2015, 376, 29-39.	1.0	13
128	Bright type-II photoluminescence from Mn-doped CdS/ZnSe/ZnS quantum dots with Mn ²⁺ ions as exciton couplers. Nanoscale, 2017, 9, 18281-18289.	2.8	13
129	Long Persistent Luminescence Enabled by Dissociation of Triplet Intermediate States in an Organic Guest/Host System. Journal of Physical Chemistry Letters, 2020, 11, 3582-3588.	2.1	12
130	Indirect optical transitions in hybrid spheres with alternating layers of titania and graphene oxide nanosheets. Optics Express, 2012, 20, 28801.	1.7	11
131	Defect-Induced Photoluminescence Blinking of Single Epitaxial InGaAs Quantum Dots. Scientific Reports, 2015, 5, 8898.	1.6	11
132	Heat treatment effect on the ultrafast dynamics and nonlinear optical properties of Ag : Si3N4nanocermets. Journal Physics D: Applied Physics, 2006, 39, 4766-4770.	1.3	10
133	Ultrafast dynamics of copper nanoparticles embedded in soda-lime silicate glass fabricated by ion exchange. Thin Solid Films, 2009, 517, 6046-6049.	0.8	10
134	Weakly coupled triplet pair states probed by quantum beating in delayed fluorescence in tetracene crystals. Journal of Chemical Physics, 2019, 151, 134309.	1.2	10
135	Exciton-acoustic phonon coupling revealed by resonant excitation of single perovskite nanocrystals. Nature Communications, 2021, 12, 2192.	5.8	10
136	Electrical Switching of Optical Gain in Perovskite Semiconductor Nanocrystals. Nano Letters, 2021, 21, 7831-7838.	4.5	10
137	Universal Existence of Localized Singleâ€Photon Emitters in the Perovskite Film of Allâ€Inorganic CsPbBr ₃ Microcrystals. Advanced Materials, 2022, 34, e2106278.	11.1	10
138	Ultrafast nonlinear optical response of silver/bismuth oxide nanocomposite films with different silver concentrations. Journal of Luminescence, 2006, 119-120, 370-377.	1.5	9
139	Ultrafast third-order nonlinear optical response of Cu:Bi2O3 nanocomposite films. Physica B: Condensed Matter, 2007, 393, 188-194.	1.3	9
140	Transition from Doublet to Triplet Excitons in Single Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 5750-5755.	2.1	9
141	Probing Permanent Dipole Moments and Removing Exciton Fine Structures in Single Perovskite Nanocrystals by an Electric Field. Physical Review Letters, 2021, 126, 197403.	2.9	9
142	Quantum efficiency of stimulated emission in colloidal semiconductor nanocrystal quantum dots. Physical Review B, 2009, 80, .	1.1	8
143	Frequency up-converted lasing in polymeric composites with two-photon absorbing antenna. Optics Express, 2012, 20, 9135.	1.7	8
144	Magnetic enhancement of photoluminescence from blue-luminescent graphene quantum dots. Applied Physics Letters, 2016, 108, .	1.5	8

#	Article	IF	CITATIONS
145	Coherent acoustic phonons in YBa2Cu3O7/La1/3Ca2/3MnO3 superlattices. Applied Physics Letters, 2016, 108, .	1.5	8
146	Coupling Among Carriers and Phonons in Femtosecond Laser Pulses Excited SrRuO ₃ : A Promising Candidate for Optomechanical and Optoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 3882-3888.	2.4	8
147	Reducing the efficiency droop by lateral carrier confinement in InGaN/GaN quantum-well nanorods. Optics Express, 2014, 22, A790.	1.7	6
148	Few-Layer PbI ₂ Nanoparticle: A 2D Semiconductor with Lateral Quantum Confinement. Journal of Physical Chemistry Letters, 2019, 10, 7863-7869.	2.1	6
149	Hole Transfer Promoted by a Viscosity Additive in an All-Polymer Photovoltaic Blend. Journal of Physical Chemistry Letters, 2020, 11, 1384-1389.	2.1	6
150	Charge Carrier Dynamics in Sn-Doped Two-Dimensional Lead Halide Perovskites Studied by Terahertz Spectroscopy. Frontiers in Energy Research, 2021, 9, .	1.2	6
151	Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots. Optics Letters, 2010, 35, 547.	1.7	5
152	Two-photon-pumped optical gain in dye-polymer composite materials. Applied Physics Letters, 2012, 100, 133305.	1.5	5
153	Ultrafast pump-probe spectroscopic signatures of superconducting and pseudogap phases in YBa2Cu3O7â°î´ films. Journal of Applied Physics, 2013, 113, 083901. Transient electronic anisotropy in overdoped <mml:math< td=""><td>1.1</td><td>5</td></mml:math<>	1.1	5
154	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi>NaF < mml:msub> < mml mathvariant="normal">e < mml:mrow> < mml:mn> 1 < /mml:mo> < mml:mo> â^² < /mml:mo> < mml:mi> x < /m mathvariant="normal">C < /mml:mi> < mml:msub> < mml:mi mathvariant="normal">o < /mml:mi> < mml:mi> x < /mml:mi> < /mml:mi> < mml:mi> As < /mml:mi> < /mml:mrow> < /m	1.1 nml:mi> <td>5</td>	5
155	superconductors. Physical Review B, 2018, 97, . Efficient quantum-dot light-emitting diodes featuring the interfacial carrier relaxation and exciton recycling. Materials Today Energy, 2021, 20, 100649.	2.5	5
156	Quantized Exciton Motion and Fine Energy-Level Structure of a Single Perovskite Nanowire. Nano Letters, 2022, 22, 2907-2914.	4.5	5
157	Two-photon absorption induced photoluminescence in para-sexiphenyl nano-needles. Chemical Physics Letters, 2007, 446, 83-86.	1.2	4
158	Multi-photon excitation in ZnO materials. Frontiers of Physics in China, 2008, 3, 181-190.	1.0	4
159	Defect recombination induced by density-activated carrier diffusion in nonpolar InGaN quantum wells. Applied Physics Letters, 2013, 103, 123506.	1.5	4
160	Charged two-exciton emission from a single semiconductor nanocrystal. Applied Physics Letters, 2015, 106, 133106.	1.5	4
161	Extended storage of multiple excitons in trap states of semiconductor nanocrystals. Applied Physics Letters, 2016, 108, .	1.5	3
162	Ag 2 Au 50 (PET) 36 Nanocluster: Dimeric Assembly of Au 25 (PET) 18 Enabled by Silver Atoms. Angewandte Chemie, 2020, 132, 14045-14050.	1.6	3

#	Article	IF	CITATIONS
163	Coherent Exciton-Phonon Coupling in CdSe/ZnS Nanocrystals Studied by Two-Dimensional Electronic Spectroscopy. Chinese Journal of Chemical Physics, 2017, 30, 637-642.	0.6	2
164	Reversible Ionic Polarization in Metal Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 283-289.	1.5	2
165	Trion-Facilitated Dexter-Type Energy Transfer in a Cluster of Single Perovskite CsPbBr3 Nanocrystals. Chinese Physics Letters, 2020, 37, 127801.	1.3	2
166	Singleâ€Photon Emission from Single Microplate MAPbI ₃ Nanocrystals with Ultranarrow Photoluminescence Linewidths and Exciton Fine Structures. Advanced Optical Materials, 0, , 2200606.	3.6	2
167	Lateral carrier confinement in InGaN quantum-well nanorods. Annals of Physics, 2015, 358, 255-265.	1.0	1
168	Auger-Assisted Ultrafast Fluorescence Measurement of Semiconductor Single-Walled Carbon Nanotubes. ACS Photonics, 2016, 3, 1415-1420.	3.2	1
169	Multiple Dark Excitons in Semiconductor CdSe Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 23758-23763.	1.5	1
170	Charge transfer via deep hole in the J51/N2200 blend. Journal of Chemical Physics, 2020, 153, 054705.	1.2	1
171	Electrical control of biexciton Auger recombination in single CdSe/CdS nanocrystals. Nanoscale, 2022, 14, 7674-7681.	2.8	1
172	Colloidal nanocrystal-based light-emitting diodes fabricated on plastic - Towards flexible quantum dot optoelectronics. , 2009, , .		0
173	Mott behavior in K _x Fe _{2-y} Se ₂ superconductors revealed by pump-probe spectroscopy. , 2015, , .		0
174	Polar phase transitions in heteroepitaxial stabilized La _{0.5} Y _{0.5} AlO ₃ thin films. Journal of Physics Condensed Matter, 2017, 29, 405401.	0.7	0
175	Two-dimensional electronic spectroscopy with active phase Management. Chinese Journal of Chemical Physics, 2021, 34, 30-42.	0.6	0
176	Frequency up-converted lasing of nanocrystal quantum-dots in microbeads. , 2009, , .		0
177	Ultrafast spectroscopic study for singlet fission. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 094210.	0.2	0
178	Coherent Formation of Multiexciton Triplet-Pair States in Singlet Fission of Crystalline Tetracene. , 2016, , .		0