Thomas Werner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1928628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. Topics in Current Chemistry, 2017, 375, 50.	5.8	226
2	Phosphonium Salt Organocatalysis. Advanced Synthesis and Catalysis, 2009, 351, 1469-1481.	4.3	219
3	Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide by Using Bifunctional Oneâ€Component Phosphorusâ€Based Organocatalysts. ChemSusChem, 2015, 8, 2655-2669.	6.8	155
4	Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catalysis, 2019, 9, 8012-8067.	11.2	146
5	α-Hydroxylation ofβ-Dicarbonyl Compounds. Advanced Synthesis and Catalysis, 2004, 346, 143-151.	4.3	137
6	An in situ formed Ca ²⁺ –crown ether complex and its use in CO ₂ -fixation reactions with terminal and internal epoxides. Green Chemistry, 2017, 19, 3769-3779.	9.0	117
7	Phosphorusâ€based Bifunctional Organocatalysts for the Addition of Carbon Dioxide and Epoxides. ChemSusChem, 2014, 7, 3268-3271.	6.8	116
8	Calcium-Based Catalytic System for the Synthesis of Bio-Derived Cyclic Carbonates under Mild Conditions. ACS Catalysis, 2018, 8, 665-672.	11.2	115
9	Recyclable Bifunctional Polystyrene and Silica Gelâ€Supported Organocatalyst for the Coupling of CO ₂ with Epoxides. ChemSusChem, 2015, 8, 2031-2034.	6.8	113
10	Bifunctional One omponent Catalysts for the Addition of Carbon Dioxide to Epoxides. ChemCatChem, 2015, 7, 459-467.	3.7	105
11	Organocatalyzed Synthesis of Oleochemical Carbonates from CO ₂ and Renewables. ChemSusChem, 2017, 10, 1076-1079.	6.8	95
12	Preparation of Acyloins by Cerium-Catalyzed, Direct Hydroxylation ofÎ ² -Dicarbonyl Compounds with Molecular Oxygen. European Journal of Organic Chemistry, 2003, 2003, 425-431.	2.4	81
13	Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium iodide and amino alcohols. Journal of CO2 Utilization, 2014, 7, 39-45.	6.8	77
14	Biomimetic Synthesis of Resorcylate Natural Products Utilizing Late Stage Aromatization: Concise Total Syntheses of the Marine Antifungal Agents 15G256Î ¹ and 15G256Î ² . Journal of the American Chemical Society, 2008, 130, 10293-10298.	13.7	76
15	Cooperative catalyst system for the synthesis of oleochemical cyclic carbonates from CO ₂ and renewables. Green Chemistry, 2016, 18, 3775-3788.	9.0	74
16	Convergent Activation Concept for CO ₂ Fixation in Carbonates. Advanced Synthesis and Catalysis, 2016, 358, 622-630.	4.3	73
17	Construction of Quaternary Stereocenters by Nickel-Catalysis of Asymmetric Michael Reactions. European Journal of Organic Chemistry, 2000, 2000, 701-705.	2.4	72
18	Immobilized bifunctional phosphonium salts as recyclable organocatalysts in the cycloaddition of	9.0	70

#	Article	IF	CITATIONS
19	First Base-Free Catalytic Wittig Reaction. Organic Letters, 2015, 17, 3078-3081.	4.6	67
20	First Enantioselective Catalytic Wittig Reaction. European Journal of Organic Chemistry, 2014, 2014, 6630-6633.	2.4	65
21	Iron-Based Binary Catalytic System for the Valorization of CO ₂ into Biobased Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2016, 4, 4805-4814.	6.7	62
22	Formation of 1,4-Diketones by Aerobic Oxidative CC Coupling of Styrene with 1,3-Dicarbonyl Compounds. Angewandte Chemie - International Edition, 2004, 43, 6547-6549.	13.8	61
23	Organocatalyzed Reduction of Tertiary Phosphine Oxides. Advanced Synthesis and Catalysis, 2016, 358, 26-29.	4.3	58
24	Straightforward Synthesis of (R)-(â^')-Kjellmanianone. Chemistry - A European Journal, 2004, 10, 1042-1045.	3.3	57
25	Mechanistic Study on the Addition of CO ₂ to Epoxides Catalyzed by Ammonium and Phosphonium Salts: A Combined Spectroscopic and Kinetic Approach. ACS Sustainable Chemistry and Engineering, 2018, 6, 10778-10788.	6.7	56
26	B(C ₆ F ₅) ₃ -Catalyzed Michael Reactions: Aromatic C–H as Nucleophiles. Organic Letters, 2017, 19, 2568-2571.	4.6	55
27	Poly(ethylene glycol)s as Ligands in Calciumâ€Catalyzed Cyclic Carbonate Synthesis. ChemSusChem, 2017, 10, 3025-3029.	6.8	54
28	Hydroxylâ€Functionalized Imidazoles: Highly Active Additives for the Potassium Iodide atalyzed Synthesis of 1,3â€Dioxolanâ€2â€one Derivatives from Epoxides and Carbon Dioxide. ChemCatChem, 2014, 6, 3493-3500.	3.7	51
29	Cerium-catalyzed α-Oxidation of β-Dicarbonyl Compounds with Molecular Oxygen. Synlett, 2002, 2002, 0119-0121.	1.8	49
30	Alkoxide-Initiated Regioselective Coupling of Carbon Disulfide and Terminal Epoxides for the Synthesis of Strongly Alternating Copolymers. Macromolecules, 2016, 49, 4723-4731.	4.8	48
31	Xâ€ray Spectroscopic Verification of the Active Species in Ironâ€Catalyzed Cross oupling Reactions. Chemistry - A European Journal, 2013, 19, 15816-15821.	3.3	47
32	Highly Efficient Polymerâ€&upported Catalytic System for the Valorization of Carbon Dioxide. ChemSusChem, 2015, 8, 3815-3822.	6.8	46
33	Recycling of Phosphorus-Based Organocatalysts by Organic Solvent Nanofiltration. ACS Sustainable Chemistry and Engineering, 2015, 3, 2817-2822.	6.7	46
34	Novel Baseâ€Free Catalytic Wittig Reaction for the Synthesis of Highly Functionalized Alkenes. Chemistry - A European Journal, 2016, 22, 2458-2465.	3.3	46
35	Transfer hydrogenation of cyclic carbonates and polycarbonate to methanol and diols by iron pincer catalysts. Green Chemistry, 2019, 21, 5248-5255.	9.0	46
36	Cerium-Catalyzed, Aerobic Oxidative Synthesis of 1,2-Dioxane Derivatives from Styrene and Their Fragmentation into 1,4-Dicarbonyl Compounds. European Journal of Organic Chemistry, 2005, 2005, 5031-5038.	2.4	40

#	Article	IF	CITATIONS
37	First Microwaveâ€Assisted Catalytic Wittig Reaction. European Journal of Organic Chemistry, 2014, 2014, 6873-6876.	2.4	40
38	Cerium-Catalyzed α-Hydroxylation Reactions of α-Cyclopropyl β-Dicarbonyl Compounds with Molecular Oxygen. European Journal of Organic Chemistry, 2006, 2006, 2601-2608.	2.4	39
39	B(C ₆ F ₅) ₃ -Catalyzed Regioselective Deuteration of Electron-Rich Aromatic and Heteroaromatic Compounds. Organic Letters, 2017, 19, 5768-5771.	4.6	37
40	Recent advances in catalytic Wittig-type reactions based on P(III)/P(V) redox cycling. Pure and Applied Chemistry, 2019, 91, 95-102.	1.9	37
41	Polyethers as Complexing Agents in Calcium-Catalyzed Cyclic Carbonate Synthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 13257-13269.	6.7	35
42	Erbium-Catalyzed Regioselective Isomerization–Cobalt-Catalyzed Transfer Hydrogenation Sequence for the Synthesis of Anti-Markovnikov Alcohols from Epoxides under Mild Conditions. ACS Catalysis, 2020, 10, 13659-13667.	11.2	34
43	Cerium-Catalyzed Reaction ofβ-Dicarbonyl Compounds with Styrene and Atmospheric Oxygen. European Journal of Organic Chemistry, 2003, 2003, 4879-4886.	2.4	33
44	Sodium Hydride Catalyzed Tishchenko Reaction. European Journal of Organic Chemistry, 2010, 2010, 6904-6907.	2.4	33
45	Phosphetane Oxides as Redox Cycling Catalysts in the Catalytic Wittig Reaction at Room Temperature. ACS Catalysis, 2019, 9, 9237-9244.	11.2	33
46	Indirect reduction of CO ₂ and recycling of polymers by manganese-catalyzed transfer hydrogenation of amides, carbamates, urea derivatives, and polyurethanes. Chemical Science, 2021, 12, 10590-10597.	7.4	33
47	Reduction of Activated Alkenes by P ^{III} /P ^V Redox Cycling Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2760-2763.	13.8	32
48	Atom economical synthesis of di- and trithiocarbonates by the lithium tert-butoxide catalyzed addition of carbon disulfide to epoxides and thiiranes. Organic and Biomolecular Chemistry, 2016, 14, 7480-7489.	2.8	29
49	Phospholaneâ€Catalyzed Wittig Reaction. European Journal of Organic Chemistry, 2015, 2015, 3286-3295.	2.4	28
50	Scope and Limitation of the Microwaveâ€Assisted Catalytic Wittig Reaction. European Journal of Organic Chemistry, 2015, 2015, 4532-4543.	2.4	27
51	Catalytic Systems for the Synthesis of Biscarbonates and Their Impact on the Sequential Preparation of Non-Isocyanate Polyurethanes. ACS Sustainable Chemistry and Engineering, 2020, 8, 1651-1658.	6.7	27
52	Simple Method for the Preparation of Esters from Grignard Reagents and Alkyl 1-Imidazolecarboxylates. Journal of Organic Chemistry, 2006, 71, 4302-4304.	3.2	26
53	Cerium-catalyzed oxidative C–C bond forming reactions. Catalysis Today, 2007, 121, 22-26.	4.4	26
54	Organocatalytic Chlorination of Alcohols by P(III)/P(V) Redox Cycling. Journal of Organic Chemistry, 2019, 84, 7863-7870.	3.2	26

#	Article	IF	CITATIONS
55	Life Cycle Assessment for the Organocatalytic Synthesis of Glycerol Carbonate Methacrylate. ChemSusChem, 2019, 12, 2701-2707.	6.8	26
56	Catalytic, Kinetic, and Mechanistic Insights into the Fixation of CO ₂ with Epoxides Catalyzed by Phenolâ€Functionalized Phosphonium Salts. ChemSusChem, 2021, 14, 363-372.	6.8	26
57	Benzoxepinones: A new isoform-selective class of tumor associated carbonic anhydrase inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115496.	3.0	25
58	A novel zinc based binary catalytic system for CO ₂ utilization under mild conditions. Organic Chemistry Frontiers, 2016, 3, 156-164.	4.5	24
59	Intramolecular Base-Free Catalytic Wittig Reaction: Synthesis of Benzoxepinones. Journal of Organic Chemistry, 2019, 84, 1320-1329.	3.2	19
60	Regio―and Stereoselective Synthesis of Dithiocarbonates under Ambient and Solventâ€Free Conditions. ChemCatChem, 2016, 8, 2027-2030.	3.7	16
61	Phosphonium Salt Catalyzed Addition of Diethylzinc to Aldehydes. Synthesis, 2011, 2011, 3482-3490.	2.3	13
62	Plasmaâ€Assisted Immobilization of a Phosphonium Salt and Its Use as a Catalyst in the Valorization of CO ₂ . ChemSusChem, 2020, 13, 1825-1833.	6.8	11
63	1,8â€Diazabicyclo[5.4.0]undecâ€7â€eneâ€Catalyzed Carbonylative Cyclization of Propargylic Alcohols with Elemental Sulfur. European Journal of Organic Chemistry, 2018, 2018, 1274-1276.	2.4	10
64	Selective Construction of Câ^'C and C=C Bonds by Manganese Catalyzed Coupling of Alcohols with Phosphorus Ylides. Advanced Synthesis and Catalysis, 2021, 363, 1096-1104.	4.3	9
65	Poly(methylhydrosiloxane) as a reductant in the catalytic base-free Wittig reaction. Green Chemistry, 2021, 23, 4852-4857.	9.0	9
66	Synthesis of a tin-functionalized cyclopentadiene derivative. Journal of Organometallic Chemistry, 2004, 689, 3550-3555.	1.8	7
67	The Mitsunobu reaction, reimagined. Science, 2019, 365, 866-867.	12.6	7
68	Reduction of Activated Alkenes by P III /P V Redox Cycling Catalysis. Angewandte Chemie, 2020, 132, 2782-2785.	2.0	7
69	A Catalytic System for the Activation of Diorganozinc Reagents. European Journal of Organic Chemistry, 2014, 2014, 4876-4883.	2.4	5
70	Copolymerization of CO2 and epoxides mediated by zinc organyls. RSC Advances, 2018, 8, 3673-3679.	3.6	5
71	Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. Topics in Current Chemistry Collections, 2017, , 89-144.	0.5	4
72	Stereoselective Synthesis of a <i>cis</i> -Cedrane-8,9-diol as a Key Intermediate for an Amber Odorant. Organic Process Research and Development, 2021, 25, 89-97.	2.7	3

#	Article	IF	CITATIONS
73	Base-Free Catalytic Wittig-/Cross-CouplingÂReaction Sequence as Short Synthetic Strategy for theÂPreparationÂof Highly Functionalized Arylbenzoxepinones. Synthesis, 2021, 53, 3545-3554.	2.3	3
74	Highly functionalized alkenes produced from base-free organocatalytic Wittig reactions: (E)-3-benzylidenepyrrolidine-2,5-dione, (E)-3-benzylidene-1-methylpyrrolidine-2,5-dione and (E)-3-benzylidene-1-tert-butylpyrrolidine-2,5-dione. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 504-508.	0.5	1
75	Trendbericht Organische Chemie. Nachrichten Aus Der Chemie, 2019, 67, 46-78.	0.0	1
76	AMPA-15N – Synthesis and application as standard compound in traceable degradation studies of glyphosate. Ecotoxicology and Environmental Safety, 2021, 225, 112768.	6.0	1
77	Cerium-Catalyzed Reaction of β-Dicarbonyl Compounds with Styrene and Atmospheric Oxygen ChemInform, 2004, 35, no.	0.0	0
78	\hat{l} ±-Hydroxylation of \hat{l}^2 -Dicarbonyl Compounds. ChemInform, 2004, 35, no.	0.0	0
79	Formation of 1,4-Diketones by Aerobic Oxidative C?C Coupling of Styrene with 1,3-Dicarbonyl Compounds ChemInform, 2005, 36, no.	0.0	0
80	2-Hydroxyethylammonium iodide. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o628-o628.	0.2	0
81	Organische Chemie 2016. Nachrichten Aus Der Chemie, 2017, 65, 266-304.	0.0	0
82	Trendbericht Organische Chemie 2017. Nachrichten Aus Der Chemie, 2018, 66, 249-280.	0.0	0
83	Crystal structure of diethyl (E)-2-[(benzofuran-2-yl)methylidene]succinate. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0872-0872.	0.5	0