List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1928101/publications.pdf Version: 2024-02-01

STEVEN P. NOLAN

#	Article	IF	CITATIONS
1	N-Heterocyclic Carbenes in Late Transition Metal Catalysis. Chemical Reviews, 2009, 109, 3612-3676.	47.7	2,800
2	N-Heterocyclic Carbenes as Organocatalysts. Angewandte Chemie - International Edition, 2007, 46, 2988-3000.	13.8	1,384
3	N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. Chemical Society Reviews, 2011, 40, 5151.	38.1	1,106
4	Well-Defined N-Heterocyclic Carbenesâ^'Palladium(II) Precatalysts for Cross-Coupling Reactions. Accounts of Chemical Research, 2008, 41, 1440-1449.	15.6	994
5	Olefin Metathesis-Active Ruthenium Complexes Bearing a Nucleophilic Carbene Ligand. Journal of the American Chemical Society, 1999, 121, 2674-2678.	13.7	993
6	Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chemical Society Reviews, 2013, 42, 6723.	38.1	918
7	Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. Chemical Communications, 2010, 46, 841.	4.1	878
8	Carbenes: Synthesis, properties, and organometallic chemistry. Coordination Chemistry Reviews, 2009, 253, 862-892.	18.8	853
9	Modified (NHC)Pd(allyl)Cl (NHC =N-Heterocyclic Carbene) Complexes for Room-Temperature Suzukiâ^'Miyaura and Buchwaldâ^'Hartwig Reactions. Journal of the American Chemical Society, 2006, 128, 4101-4111.	13.7	844
10	Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: A quest for understanding. Coordination Chemistry Reviews, 2007, 251, 874-883.	18.8	822
11	N-Heterocyclic carbenes in gold catalysis. Chemical Society Reviews, 2008, 37, 1776.	38.1	698
12	Steric and Electronic Properties of N-Heterocyclic Carbenes (NHC):Â A Detailed Study on Their Interaction with Ni(CO)4. Journal of the American Chemical Society, 2005, 127, 2485-2495.	13.7	591
13	The Development and Catalytic Uses of N-Heterocyclic Carbene Gold Complexes. Accounts of Chemical Research, 2011, 44, 91-100.	15.6	591
14	Determination of N-Heterocyclic Carbene (NHC) Steric and Electronic Parameters using the [(NHC)lr(CO) ₂ Cl] System. Organometallics, 2008, 27, 202-210.	2.3	541
15	A General Method for the Suzukiâ^'Miyaura Cross-Coupling of Sterically Hindered Aryl Chlorides:Â Synthesis of Di- and Tri-ortho-substituted Biaryls in 2-Propanol at Room Temperature. Journal of the American Chemical Society, 2003, 125, 16194-16195.	13.7	507
16	Palladiumâ^'Imidazol-2-ylidene Complexes as Catalysts for Facile and Efficient Suzuki Cross-Coupling Reactions of Aryl Chlorides with Arylboronic Acids. Journal of Organic Chemistry, 1999, 64, 3804-3805.	3.2	487
17	Carboxylation of Câ [~] 'H Bonds Using <i>N</i> -Heterocyclic Carbene Gold(I) Complexes. Journal of the American Chemical Society, 2010, 132, 8858-8859.	13.7	464
18	Catalytic cross-coupling reactions mediated by palladium/nucleophilic carbene systems. Journal of Organometallic Chemistry, 2002, 653, 69-82.	1.8	462

#	Article	IF	CITATIONS
19	Propargylic Esters in Gold Catalysis: Access to Diversity. Angewandte Chemie - International Edition, 2007, 46, 2750-2752.	13.8	462
20	Synthesis and Structural Characterization of N-Heterocyclic Carbene Gold(I) Complexes. Organometallics, 2005, 24, 2411-2418.	2.3	457
21	Stabilization of Organometallic Species Achieved by the Use of Nâ€Heterocyclic Carbene (NHC) Ligands. European Journal of Inorganic Chemistry, 2005, 2005, 1815-1828.	2.0	436
22	[(NHC)Au ^I]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 2009, 131, 448-449.	13.7	432
23	Ruthenium Carbene Complexes withN,Nâ€~-Bis(mesityl)imidazol-2-ylidene Ligands: RCM Catalysts of Extended Scope. Journal of Organic Chemistry, 2000, 65, 2204-2207.	3.2	430
24	N-Heterocyclic Carbene Complexes in C–H Activation Reactions. Chemical Reviews, 2020, 120, 1981-2048.	47.7	429
25	A Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. Angewandte Chemie - International Edition, 2005, 44, 5284-5288.	13.8	422
26	A Combined Experimental and Theoretical Study Examining the Binding of N-Heterocyclic Carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) Moiety:  Insight into Stereoelectronic Differences between Unsaturated and Saturated NHC Ligands. Organometallics, 2003, 22, 4322-4326.	2.3	400
27	Structure and Reactivity of "Unusual―N-Heterocyclic Carbene (NHC) Palladium Complexes Synthesized from Imidazolium Salts. Journal of the American Chemical Society, 2004, 126, 5046-5047.	13.7	363
28	Efficient Cross-Coupling of Aryl Chlorides with Aryl Grignard Reagents (Kumada Reaction) Mediated by a Palladium/Imidazolium Chloride System. Journal of the American Chemical Society, 1999, 121, 9889-9890.	13.7	358
29	Cross-Coupling and Dehalogenation Reactions Catalyzed by (N-Heterocyclic carbene)Pd(allyl)Cl Complexes. Journal of Organic Chemistry, 2004, 69, 3173-3180.	3.2	357
30	Activation and Reactivity of (NHC)Pd(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes in Cross-Coupling Reactions. Organometallics, 2002, 21, 5470-5472.	2.3	353
31	(NHC)Copper(I)-Catalyzed [3+2] Cycloaddition of Azides and Mono- or Disubstituted Alkynes. Chemistry - A European Journal, 2006, 12, 7558-7564.	3.3	343
32	Copper, Silver, and Gold Complexes in Hydrosilylation Reactions. Accounts of Chemical Research, 2008, 41, 349-358.	15.6	342
33	N-Heterocyclic Carbenes as Versatile Nucleophilic Catalysts for Transesterification/Acylation Reactions. Organic Letters, 2002, 4, 3583-3586.	4.6	338
34	Sustainable Concepts in Olefin Metathesis. Angewandte Chemie - International Edition, 2007, 46, 6786-6801.	13.8	328
35	Suzukiâ^'Miyaura Cross-Coupling Reactions Mediated by Palladium/Imidazolium Salt Systems. Organometallics, 2002, 21, 2866-2873.	2.3	323
36	N-Heterocyclic Carbene Gold(I) and Copper(I) Complexes in C–H Bond Activation. Accounts of Chemical Research, 2012, 45, 778-787.	15.6	320

#	Article	IF	CITATIONS
37	Amination Reactions of Aryl Halides with Nitrogen-Containing Reagents Mediated by Palladium/Imidazolium Salt Systems. Journal of Organic Chemistry, 2001, 66, 7729-7737.	3.2	319
38	Well-Defined Palladium(II)–NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N–C/O–C Cleavage. Accounts of Chemical Research, 2018, 51, 2589-2599.	15.6	316
39	Rapid Room Temperature Buchwald–Hartwig and Suzuki–Miyaura Couplings of Heteroaromatic Compounds Employing Low Catalyst Loadings. Chemistry - A European Journal, 2006, 12, 5142-5148.	3.3	314
40	Aul-Catalyzed Tandem [3,3] Rearrangement–Intramolecular Hydroarylation: Mild and Efficient Formation of Substituted Indenes. Angewandte Chemie - International Edition, 2006, 45, 3647-3650.	13.8	311
41	Carboxylation of NH/CH Bonds Using Nâ€Heterocyclic Carbene Copper(I) Complexes. Angewandte Chemie - International Edition, 2010, 49, 8674-8677.	13.8	309
42	Synthesis of Well-DefinedN-Heterocyclic Carbene Silver(I) Complexes. Organometallics, 2005, 24, 6301-6309.	2.3	306
43	Stereoelectronic Effects Characterizing Nucleophilic Carbene Ligands Bound to the Cp*RuCl (Cp* =) Tj ETQq1 1 (0.784314 2.3	rgBT /Overloo
44	Thermochemistry and catalytic application in olefin metathesis. Journal of Organometallic Chemistry, 2000, 606, 49-54.	1.8	304
45	Synthetic and Structural Studies of (NHC)Pd(allyl)Cl Complexes (NHC =N-heterocyclic carbene). Organometallics, 2004, 23, 1629-1635.	2.3	296
46	Synthesis, Characterization, and Catalytic Activity ofN-Heterocyclic Carbene (NHC) Palladacycle Complexes. Organic Letters, 2003, 5, 1479-1482.	4.6	290
47	Interaction of a BulkyN-Heterocyclic Carbene Ligand with Rh(I) and Ir(I). Double Câ^'H Activation and Isolation of Bare 14-Electron Rh(III) and Ir(III) Complexes. Journal of the American Chemical Society, 2005, 127, 3516-3526.	13.7	285
48	(NHC)Cul (NHC = N-Heterocyclic Carbene) Complexes as Efficient Catalysts for the Reduction of Carbonyl Compounds. Organometallics, 2004, 23, 1157-1160.	2.3	283
49	A N-heterocyclic carbene gold hydroxide complex: a golden synthon. Chemical Communications, 2010, 46, 2742.	4.1	276
50	Quantifying and understanding the steric properties of N-heterocyclic carbenes. Chemical Communications, 2017, 53, 2650-2660.	4.1	271
51	Golden Carousel in Catalysis: The Cationic Gold/Propargylic Ester Cycle. Angewandte Chemie - International Edition, 2008, 47, 718-721.	13.8	265
52	[(NHC) ₂ Cu]X Complexes as Efficient Catalysts for Azide–Alkyne Click Chemistry at Low Catalyst Loadings. Angewandte Chemie - International Edition, 2008, 47, 8881-8884.	13.8	257
53	Highly Efficient Heck Reactions of Aryl Bromides withn-Butyl Acrylate Mediated by a Palladium/Phosphineâ~'Imidazolium Salt System. Organic Letters, 2001, 3, 1511-1514.	4.6	253
54	Convenient and Efficient Suzukiâ~'Miyaura Cross-Coupling Catalyzed by a Palladium/Diazabutadiene System. Organic Letters, 2001, 3, 1077-1080.	4.6	249

#	Article	IF	CITATIONS
55	Suzukiâ^'Miyaura, α-Ketone Arylation and Dehalogenation Reactions Catalyzed by a Versatile N-Heterocyclic Carbeneâ^'Palladacycle Complex. Journal of Organic Chemistry, 2006, 71, 685-692.	3.2	244
56	What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the π-accepting abilities of N-heterocyclic carbenes?. Chemical Science, 2015, 6, 1895-1904.	7.4	244
57	Transition-metal systems bearing a nucleophilic carbene ancillary ligand: from thermochemistry to catalysis. Advances in Organometallic Chemistry, 2000, 46, 181-222.	1.0	243
58	General and Efficient Catalytic Amination of Aryl Chlorides Using a Palladium/Bulky Nucleophilic Carbene System. Organic Letters, 1999, 1, 1307-1309.	4.6	239
59	Influence of Sterically Demanding Carbene Ligation on Catalytic Behavior and Thermal Stability of Ruthenium Olefin Metathesis Catalysts. Organometallics, 1999, 18, 5375-5380.	2.3	237
60	Well-Defined, Air-Stable (NHC)Pd(Allyl)Cl (NHC = N-Heterocyclic Carbene) Catalysts for the Arylation of Ketones. Organic Letters, 2002, 4, 4053-4056.	4.6	236
61	An Air-Stable Palladium/N-Heterocyclic Carbene Complex and Its Reactivity in Aryl Amination. Organic Letters, 2002, 4, 2229-2231.	4.6	233
62	Efficient Transesterification/Acylation Reactions Mediated byN-Heterocyclic Carbene Catalysts. Journal of Organic Chemistry, 2003, 68, 2812-2819.	3.2	229
63	Straightforward synthesis of [Au(NHC)X] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chemical Communications, 2013, 49, 5541.	4.1	223
64	Cationic Iridium Complexes Bearing Imidazol-2-ylidene Ligands as Transfer Hydrogenation Catalysts. Organometallics, 2001, 20, 4246-4252.	2.3	215
65	Indenylideneâ^'Imidazolylidene Complexes of Ruthenium as Ring-Closing Metathesis Catalysts. Organometallics, 1999, 18, 5416-5419.	2.3	214
66	Thermodynamics of N-Heterocyclic Carbene Dimerization: The Balance of Sterics and Electronics. Organometallics, 2008, 27, 2679-2681.	2.3	213
67	Chemoselective olefin metathesis transformations mediated by ruthenium complexes. Chemical Society Reviews, 2010, 39, 3305.	38.1	203
68	A Simple and Efficient Copper-Catalyzed Procedure for the Hydrosilylation of Hindered and Functionalized Ketones. Journal of Organic Chemistry, 2005, 70, 4784-4796.	3.2	200
69	[(NHC)CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click Chemistry. On the advantage of using well-defined catalytic systems. Dalton Transactions, 2010, 39, 7595.	3.3	197
70	Simple (Imidazol-2-ylidene)-Pd-Acetate Complexes as Effective Precatalysts for Sterically Hindered Suzukiâ^'Miyaura Couplings. Organic Letters, 2005, 7, 1829-1832.	4.6	194
71	Efficient Cross-Coupling Reactions of Aryl Chlorides and Bromides with Phenyl- or Vinyltrimethoxysilane Mediated by a Palladium/Imidazolium Chloride System. Organic Letters, 2000, 2, 2053-2055.	4.6	193
72	Synthesis, Characterization and Reactivity of N-Heterocyclic Carbene Gold(III) Complexes. Organometallics, 2007, 26, 1376-1385.	2.3	189

#	Article	IF	CITATIONS
73	Copper N-heterocyclic carbene complexes in catalysis. Catalysis Science and Technology, 2013, 3, 912.	4.1	187
74	Catalytic Dehalogenation of Aryl Halides Mediated by a Palladium/Imidazolium Salt System. Organometallics, 2001, 20, 3607-3612.	2.3	181
75	Electronic Properties of N-Heterocyclic Carbene (NHC) Ligands:  Synthetic, Structural, and Spectroscopic Studies of (NHC)Platinum(II) Complexes. Organometallics, 2007, 26, 5880-5889.	2.3	181
76	[(NHC)AuI]-Catalyzed Formation of Conjugated Enones and Enals: An Experimental and Computational Study. Chemistry - A European Journal, 2007, 13, 6437-6451.	3.3	180
77	Organo-f-element thermochemistry. Absolute metal-ligand bond disruption enthalpies in bis(pentamethylcyclopentadienyl)samarium hydrocarbyl, hydride, dialkylamide, alkoxide, halide, thiolate, and phosphide complexes. Implications for organolanthanide bonding and reactivity. Journal of the American Chemical Society, 1989, 111, 7844-7853.	13.7	177
78	Gold Activation of Nitriles: Catalytic Hydration to Amides. Chemistry - A European Journal, 2009, 15, 8695-8697.	3.3	175
79	Development of Versatile and Silverâ€Free Protocols for Gold(I) Catalysis. Chemistry - A European Journal, 2010, 16, 13729-13740.	3.3	175
80	(IPr)Pd(acac)Cl:  An Easily Synthesized, Efficient, and Versatile Precatalyst for Câ^'N and Câ^'C Bond Formation. Journal of Organic Chemistry, 2006, 71, 3816-3821.	3.2	174
81	Stable, Three-Coordinate Ni(CO)2(NHC) (NHC = N-Heterocyclic Carbene) Complexes Enabling the Determination of Niâ ⁻ 'NHC Bond Energies. Journal of the American Chemical Society, 2003, 125, 10490-10491.	13.7	173
82	Synthesis of N-heterocyclic carbene ligands and derived ruthenium olefin metathesis catalysts. Nature Protocols, 2011, 6, 69-77.	12.0	171
83	Transesterification/Acylation of Secondary Alcohols Mediated by N-Heterocyclic Carbene Catalysts. Journal of Organic Chemistry, 2004, 69, 209-212.	3.2	169
84	[Pd(IPr* ^{OMe})(acac)Cl]: Tuning the N-Heterocyclic Carbene in Catalytic C–N Bond Formation. Organometallics, 2013, 32, 330-339.	2.3	167
85	Alkane Carbonâ^'Hydrogen Bond Functionalization with (NHC)MCl Precatalysts (M = Cu, Au; NHC =) Tj ETQq1 1	0.784314 2.3	rgBT /Overlo
86	Dinuclear Gold Catalysis: Are Two Gold Centers Better than One?. Angewandte Chemie - International Edition, 2012, 51, 8156-8159.	13.8	164
87	[Pd(IPr*)(cinnamyl)Cl]: An Efficient Preâ€catalyst for the Preparation of Tetraâ€ <i>ortho</i> â€substituted Biaryls by Suzuki–Miyaura Crossâ€Coupling. Chemistry - A European Journal, 2012, 18, 4517-4521.	3.3	164
88	Simple Synthesis of CpNi(NHC)Cl Complexes (Cp = Cyclopentadienyl; NHC = N-Heterocyclic Carbene). Organometallics, 2005, 24, 3442-3447.	2.3	163
89	Cationic NHC–gold(I) complexes: Synthesis, isolation, and catalytic activity. Journal of Organometallic Chemistry, 2009, 694, 551-560.	1.8	163
90	Palladium/Imidazolium Salt Catalyzed Coupling of Aryl Halides with Hypervalent Organostannates. Organic Letters, 2001, 3, 119-122.	4.6	161

#	Article	IF	CITATIONS
91	Homogeneous Nickel Catalysts for the Selective Transfer of a Single Arylthio Group in the Catalytic Hydrothiolation of Alkynes. Organometallics, 2006, 25, 4462-4470.	2.3	157
92	A Cationic Iridium Complex Bearing an Imidazol-2-ylidene Ligand as Alkene Hydrogenation Catalyst. Organometallics, 2001, 20, 1255-1258.	2.3	154
93	Cationic Copper(I) Complexes as Efficient Precatalysts for the Hydrosilylation of Carbonyl Compounds. Organometallics, 2006, 25, 2355-2358.	2.3	154
94	Ruthenium–indenylidene complexes: powerful tools for metathesis transformations. Chemical Communications, 2008, , 2726.	4.1	153
95	Intramolecular Câ^'H Activation Involving a Rhodiumâ^'Imidazol-2-ylidene Complex and Its Reaction with H2and CO. Organometallics, 2000, 19, 1194-1197.	2.3	149
96	Synthesis and Characterization of [Cu(NHC) ₂]X Complexes: Catalytic and Mechanistic Studies of Hydrosilylation Reactions. Chemistry - A European Journal, 2008, 14, 158-168.	3.3	145
97	A [(NHC)CuCl] complex as a latent Click catalyst. Chemical Communications, 2008, , 4747.	4.1	143
98	Nâ€Heterocyclic Carbene and Phosphine Ruthenium Indenylidene Precatalysts: A Comparative Study in Olefin Metathesis. Chemistry - A European Journal, 2007, 13, 8029-8036.	3.3	142
99	Organolanthanide-centered hydroamination/cyclization of aminoolefins. Expedient oxidative access to catalytic cycles. Organometallics, 1990, 9, 1716-1718.	2.3	141
100	Aul-catalyzed cycloisomerization of 1,5-enynes bearing a propargylic acetate: formation of unexpected bicyclo[3.1.0]hexene. Chemical Communications, 2006, , 2048-2050.	4.1	141
101	Au/Ag-Cocatalyzed Aldoximes to Amides Rearrangement under Solvent- and Acid-Free Conditions. Journal of Organic Chemistry, 2010, 75, 1197-1202.	3.2	139
102	Direct C–H carboxylation with complexes of the coinage metals. Chemical Communications, 2011, 47, 3021-3024.	4.1	136
103	Key processes in ruthenium-catalysed olefin metathesis. Chemical Communications, 2014, 50, 10355.	4.1	136
104	Synthetic and Structural Studies of [AuCl ₃ (NHC)] Complexes. Organometallics, 2010, 29, 394-402.	2.3	135
105	A general synthetic route to [Cu(X)(NHC)] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chemical Communications, 2013, 49, 10483.	4.1	135
106	[Pd(IPr*)(3-Cl-pyridinyl)Cl ₂]: A Novel and Efficient PEPPSI Precatalyst. Organometallics, 2012, 31, 6947-6951.	2.3	130
107	Gold―and Platinum atalyzed Cycloisomerization of Enynyl Esters versus Allenenyl Esters: An Experimental and Theoretical Study. Chemistry - A European Journal, 2009, 15, 3243-3260.	3.3	129
108	Electrochemical oxidation and nucleophilic addition reactions of metallocenes in electrospray mass spectrometry. Analytical Chemistry, 1994, 66, 119-125.	6.5	127

#	Article	IF	CITATIONS
109	[(NHC)AuI]-Catalyzed Rearrangement of Allylic Acetates. Organic Letters, 2007, 9, 2653-2656.	4.6	127
110	Monomeric Cyclopentadienylnickel Methoxo and Amido Complexes:  Synthesis, Characterization, Reactivity, and Use for Exploring the Relationship between Hâ^'X and Mâ^'X Bond Energies. Journal of the American Chemical Society, 1997, 119, 12800-12814.	13.7	126
111	(p-cymene)RuLCl2(L = 1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene and) Tj ETQq1 1 0.784314 rgBT /Overlock Catalysts. Organometallics, 1999, 18, 3760-3763.	10 Tf 50 6 2.3	67 Td (1,3-6 126
112	Structural requirements for the interaction of combretastatins with tubulin: how important is the trimethoxy unit?. Organic and Biomolecular Chemistry, 2003, 1, 3033-3037.	2.8	126
113	Coordinatively Unsaturated 16-Electron Ruthenium Allenylidene Complexes:Â Synthetic, Structural, and Catalytic Studies. Organometallics, 1999, 18, 5187-5190.	2.3	125
114	Efficient Sonogashira Reactions of Aryl Bromides with Alkynylsilanes Catalyzed by a Palladium/Imidazolium Salt System. Organometallics, 2002, 21, 1020-1022.	2.3	125
115	An Industrially Viable Catalyst System for Palladium-Catalyzed Telomerizations of 1,3-Butadiene with Alcohols. Chemistry - A European Journal, 2004, 10, 3891-3900.	3.3	125
116	N-Heterocyclic Carbene-Copper(I) Complexes in Homogeneous Catalysis. Synlett, 2007, 2007, 2158-2167.	1.8	123
117	TRANSITION METAL-CATALYZED HYDROSILYLATION OF CARBONYL COMPOUNDS AND IMINES. A REVIEW. Organic Preparations and Procedures International, 2007, 39, 523-559.	1.3	123
118	Hydrophenoxylation of Alkynes by Cooperative Gold Catalysis. Angewandte Chemie - International Edition, 2013, 52, 9767-9771.	13.8	121
119	Rhodium alkoxide complexes. Formation of an unusually strong intermolecular hydrogen bond in (PMe3)3Rh-Otol(HOtol). Journal of the American Chemical Society, 1987, 109, 6563-6565.	13.7	120
120	Room-temperature activation of aryl chlorides in Suzuki–Miyaura coupling using a [Pd(μ-Cl)Cl(NHC)]2 complex (NHC = N-heterocyclic carbene). Chemical Communications, 2008, , 3190.	4.1	119
121	N-Heterocyclic Carbene Palladium Complexes Bearing Carboxylate Ligands and Their Catalytic Activity in the Hydroarylation of Alkynes. Organometallics, 2004, 23, 3752-3755.	2.3	118
122	A Versatile Cuprous Synthon: [Cu(IPr)(OH)] (IPr = 1,3 bis(diisopropylphenyl)imidazol-2-ylidene). Organometallics, 2010, 29, 3966-3972.	2.3	118
123	Synthetic Routes to Late Transition Metal–NHC Complexes. Trends in Chemistry, 2020, 2, 721-736.	8.5	118
124	On the Origin of Selective Nitrous Oxide Nâ^'N Bond Cleavage by Three-Coordinate Molybdenum(III) Complexes. Journal of the American Chemical Society, 2001, 123, 7271-7286.	13.7	117
125	Selectivity Switch in the Synthesis of Vinylgold(I) Intermediates. Organometallics, 2011, 30, 6328-6337.	2.3	116
126	Complete Control of the Chemoselectivity in Catalytic Carbene Transfer Reactions from Ethyl Diazoacetate:Â AnN-Heterocyclic Carbeneâ^'Cu System That Suppresses Diazo Coupling. Journal of the American Chemical Society, 2004, 126, 10846-10847.	13.7	115

STEVEN P. NOLAN

#	Article	IF	CITATIONS
127	Large yet Flexible Nâ€Heterocyclic Carbene Ligands for Palladium Catalysis. Chemistry - A European Journal, 2013, 19, 17358-17368.	3.3	114
128	Four-Coordinate Molybdenum Chalcogenide Complexes Relevant to Nitrous Oxide Nâ^'N Bond Cleavage by Three-Coordinate Molybdenum(III):À Synthesis, Characterization, Reactivity, and Thermochemistry. Journal of the American Chemical Society, 1998, 120, 2071-2085.	13.7	113
129	The Cl2(PCy3)(IMes)Ru(ĩCHPh) catalyst: olefin metathesis versus olefin isomerization. Journal of Organometallic Chemistry, 2002, 643-644, 247-252.	1.8	113
130	Catalytic activity of Pd(II) and Pd(II)/DAB-R systems for the Heck arylation of olefins. Journal of Organometallic Chemistry, 2003, 687, 269-279.	1.8	112
131	Double Câ^'H Activation in a Rhâ^'NHC Complex Leading to the Isolation of a 14-Electron Rh(III) Complex. Journal of the American Chemical Society, 2004, 126, 5054-5055.	13.7	111
132	[{Au(IPr)} ₂ (μâ€OH)]X Complexes: Synthetic, Structural and Catalytic Studies. Chemistry - A European Journal, 2011, 17, 1238-1246.	3.3	111
133	The use of the sterically demanding IPr* and related ligands in catalysis. Chemical Communications, 2014, 50, 14926-14937.	4.1	111

134

#	Article	IF	CITATIONS
145	Efficiency of a Ruthenium Catalyst in Metathesis Reactions of Sulfur-Containing Compounds. Organic Letters, 2002, 4, 1767-1770.	4.6	98
146	Methoxy-Functionalized <i>N</i> -Heterocyclic Carbenes. Organometallics, 2014, 33, 2048-2058.	2.3	97
147	Mechanistic Aspects of the Palladiumâ€Catalyzed Suzukiâ€Miyaura Crossâ€Coupling Reaction. Chemistry - A European Journal, 2021, 27, 13481-13493.	3.3	97
148	Preparation and Activity of Recyclable Polymer-Supported Ruthenium Olefin Metathesis Catalysts. Organometallics, 2002, 21, 671-679.	2.3	96
149	Efficient silver-free gold(I)-catalyzed hydration of alkynes at low catalyst loading. Journal of Organometallic Chemistry, 2011, 696, 7-11.	1.8	96
150	The Activation Mechanism of Ru–Indenylidene Complexes in Olefin Metathesis. Journal of the American Chemical Society, 2013, 135, 7073-7079.	13.7	96
151	[{Au(NHC)} ₂ (μ-OH)][BF ₄]: <i>Silver-Free</i> and <i>Acid-Free</i> Catalysts for Water-Inclusive Gold-Mediated Organic Transformations. Organometallics, 2013, 32, 1106-1111.	2.3	95
152	Telomerization of Amines Mediated by CationicN-Heterocyclic Carbene (NHC) Palladium Complexes. Organometallics, 2003, 22, 3175-3177.	2.3	94
153	An Electron-Deficient Iridium(III) Dihydride Complex Capable of Intramolecular CH Activation. Angewandte Chemie - International Edition, 2005, 44, 2512-2515.	13.8	92
154	Decarboxylation of aromatic carboxylic acids by gold(<scp>i</scp>)- <i>N</i> -heterocyclic carbene (NHC) complexes. Chemical Communications, 2011, 47, 5455-5457.	4.1	92
155	Influence of a Very Bulky <i>N-</i> Heterocyclic Carbene in Gold-Mediated Catalysis. Organometallics, 2011, 30, 5463-5470.	2.3	92
156	Enhanced Activity of [Ni(NHC)CpCl] Complexes in Arylamination Catalysis. Organometallics, 2013, 32, 6265-6270.	2.3	92
157	Aminocarbonyl Group Containing Hoveydaâ~'Grubbs-Type Complexes: Synthesis and Activity in Olefin Metathesis Transformations. Journal of Organic Chemistry, 2008, 73, 4225-4228.	3.2	91
158	Mixed Phosphite/ <i>N</i> -Heterocyclic Carbene Complexes: Synthesis, Characterization and Catalytic Studies. Organometallics, 2010, 29, 1443-1450.	2.3	90
159	Hydrofluorination of Alkynes Catalysed by Gold Bifluorides. ChemCatChem, 2015, 7, 240-244.	3.7	90
160	[Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and Readily Available Precatalysts for Suzuki and Buchwald–Hartwig Cross-coupling (Transamidation) of Amides and Esters by N–C/O–C Activation. Organic Letters, 2019, 21, 3304-3309.	4.6	90
161	Copperâ^'Carbene Complexes as Catalysts in the Synthesis of Functionalized Styrenes and Aliphatic Alkenes. Journal of Organic Chemistry, 2007, 72, 144-149.	3.2	89
162	An Efficient Palladiumâ€NHC (NHC=Nâ€Heterocyclic Carbene) and Aryl Amination Preâ€Catalyst: [Pd(IPr*)(cinnamyl)Cl]. Advanced Synthesis and Catalysis, 2012, 354, 1897-1901.	4.3	89

STEVEN P. NOLAN

#	Article	IF	CITATIONS
163	Straightforward Synthetic Access to <i>gem</i> â€Diaurated and Digold σ,Ï€â€Acetylide Species. Angewandte Chemie - International Edition, 2013, 52, 938-942.	13.8	87
164	A Three-Component Tandem Reductive Aldol Reaction Catalyzed by N-Heterocyclic Carbeneâ^'Copper Complexes. Organic Letters, 2006, 8, 6059-6062.	4.6	86
165	N-Heterocyclic carbenes: advances in transition metal-mediated transformations and organocatalysis. Annual Reports on the Progress of Chemistry Section B, 2007, 103, 193.	0.9	86
166	Toxicity of Copper(I)–NHC Complexes Against Human Tumor Cells: Induction of Cell Cycle Arrest, Apoptosis, and DNA Cleavage. Chemistry - A European Journal, 2009, 15, 314-318.	3.3	86
167	Continuous flow homogeneous alkene metathesis with built-in catalyst separation. Green Chemistry, 2011, 13, 1187.	9.0	86
168	Cytotoxicity of Gold(I) Nâ€Heterocyclic Carbene Complexes Assessed by Using Human Tumor Cell Lines. Chemistry - A European Journal, 2011, 17, 6620-6624.	3.3	86
169	Optimizing Catalyst and Reaction Conditions in Gold(I) Catalysis–Ligand Development. Chemical Reviews, 2021, 121, 8559-8612.	47.7	85
170	Expeditious Synthesis of [Au(NHC)(L)] ⁺ (NHC = N-Heterocyclic Carbene; L = Phosphine or) Tj ETQqC) 0_0,rgBT 2.3	/Oyerlock 10
171	[Pd(IPr* ^{OMe})(cin)Cl] (cin = Cinnamyl): A Versatile Catalyst for C–N and C–C Bond Formation. Organometallics, 2014, 33, 1253-1258.	2.3	84
172	Simple and Convenient Synthetic Procedure Leading to Ruthenium Olefin Metathesis Catalysts Bearing the N,Nâ€~-Bis(mesityl)imidazol-2-ylidene (IMes) Ligand. Organometallics, 2000, 19, 2055-2057.	2.3	83
173	<i>N</i> -Heterocyclic Carbenes (NHCs) Containing <i>N</i> - <i>C</i> -Palladacycle Complexes: Synthesis and Reactivity in Aryl Amination Reactions. Organometallics, 2008, 27, 5525-5531.	2.3	82
174	[Pd(NHC)(allyl)Cl] Complexes: Synthesis and Determination of the NHC Percent Buried Volume (% <i>V</i> _{bur}) Steric Parameter. European Journal of Inorganic Chemistry, 2009, 2009, 1767-1773.	2.0	82
175	Heats of reaction of Cp(PMe3)Ir(R)(H) (R = C6H5, C6H11, H) with HCl, CCl4, CBr4, and Mel. A solution thermochemical study of the C-H insertion reaction. Journal of the American Chemical Society, 1987, 109, 3143-3145.	13.7	80
176	A General Synthetic Route to Mixed NHC–Phosphane Palladium(0) Complexes (NHC=Nâ€Heterocyclic) Tj ETQo	0 0 0 rgB ⁻ 3.3 rgB	T /Qverlock I
177	Carbon–Sulfur Bond Formation Catalyzed by [Pd(IPr* ^{OMe})(cin)Cl] (cinÂ= cinnamyl). Journal of Organic Chemistry, 2013, 78, 9303-9308.	3.2	80
178	Stereoselective Gold(I)-Catalyzed Intermolecular Hydroalkoxlation of Alkynes. ACS Catalysis, 2015, 5, 1330-1334.	11.2	80
179	Oneâ€Pot Goldâ€Catalyzed Synthesis of Azepino[1,2â€ <i>a</i>]indoles. Angewandte Chemie - International Edition, 2012, 51, 9891-9895.	13.8	79

Structural characterization and catalytic activity of the rhodium–carbene complex Rh(PPh3)2(IMes)Cl

180

#	Article	IF	CITATIONS
181	Palladium-catalyzed Reactions Using NHC Ligands. , 2006, , 47-82.		78
182	Synthetic, Structural, and Thermochemical Studies of N-Heterocyclic Carbene (NHC) and Tertiary Phosphine Ligands in the [(L) ₂ Ni(CO) ₂] (L = PR ₃ , NHC) System. Organometallics, 2008, 27, 3181-3186.	2.3	78
183	[Pd(IPr*)(acac)Cl]: An Easily Synthesized, Bulky Precatalyst for C–N Bond Formation. Organometallics, 2012, 31, 3402-3409.	2.3	78
184	Exploring the Coordination of Cyclic Selenoureas to Gold(I). Organometallics, 2014, 33, 3640-3645.	2.3	78
185	Mechanistic Study of Suzuki–Miyaura Crossâ€Coupling Reactions of Amides Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. ChemCatChem, 2018, 10, 3096-3106.	3.7	78
186	Catalytic Dehalogenation of Aryl Chlorides Mediated by Ruthenium(II) Phosphine Complexes. Organometallics, 1999, 18, 1299-1304.	2.3	76
187	Towards Longâ€Living Metathesis Catalysts by Tuning the Nâ€Heterocyclic Carbene (NHC) Ligand on Trifluoroacetamideâ€Activated Boomerang Ru Complexes. European Journal of Organic Chemistry, 2009, 2009, 4254-4265.	2.4	75
188	Gold(i)-catalyzed synthesis of furans and pyrroles via alkyne hydration. Catalysis Science and Technology, 2011, 1, 58.	4.1	75
189	How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?. Dalton Transactions, 2013, 42, 7433.	3.3	75
190	The thermodynamic driving force for Cî—,H activation at iridium. Polyhedron, 1988, 7, 1429-1440.	2.2	74
191	First Transition Metal-Boryl Bond Energy and Quantitation of Large Differences in Sequential Bond Dissociation Energies of Boranes. Journal of the American Chemical Society, 1994, 116, 4121-4122.	13.7	74
192	How To Insulate a Reactive Site from a Perfluoroalkyl Group:Â Photoelectron Spectroscopy, Calorimetric, and Computational Studies of Long-Range Electronic Effects in Fluorous Phosphines P((CH2)m(CF2)7CF3)3. Journal of the American Chemical Society, 2002, 124, 1516-1523.	13.7	74
193	Nâ€Heterocyclic Carbene–Palladium Complexes [(NHC)Pd(acac)Cl]: Improved Synthesis and Catalytic Activity in Largeâ€Scale Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2007, 349, 2380-2384.	4.3	74
194	Coordinatively Unsaturated Ruthenium Complexes As Efficient Alkyne–Azide Cycloaddition Catalysts. Organometallics, 2012, 31, 756-767.	2.3	74
195	Alkyne coupling reactions mediated by organolanthanides. Probing the mechanism by metal and alkyne variation. Organometallics, 1993, 12, 3618-3623.	2.3	73
196	N-Heterocyclic Carbenes as Activating Ligands for Hydrogenation and Isomerization of Unactivated Olefins. Organometallics, 2005, 24, 1056-1058.	2.3	73
197	Highly Active [Pd(μ-Cl)(Cl)(NHC)] ₂ (NHC = N-Heterocyclic Carbene) in the Cross-Coupling of Grignard Reagents with Aryl Chlorides. Organometallics, 2009, 28, 2915-2919.	2.3	71
198	Lewis Acids Accelerate Reductive Elimination of RCN from P2Pd(R)(CN). Organometallics, 1999, 18, 297-299.	2.3	70

#	Article	IF	CITATIONS
199	Gold-Catalyzed Meyerâ^'Schuster Rearrangement: Application to the Synthesis of Prostaglandins. Organometallics, 2010, 29, 3665-3668.	2.3	70
200	A simple 1H NMR method for determining the I_f -donor properties of N-heterocyclic carbenes. Tetrahedron Letters, 2019, 60, 378-381.	1.4	70
201	Stable Carbenes: From †Laboratory Curiosities' to Catalysis Mainstays. Synlett, 2013, 24, 1188-1189.	1.8	69
202	Nickel-catalysed carboxylation of organoboronates. Chemical Communications, 2014, 50, 8010.	4.1	69
203	Facile and efficient KOH-catalysed reduction of esters and tertiary amides. Chemical Communications, 2013, 49, 9758.	4.1	68
204	Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. Organometallics, 2017, 36, 2088-2095.	2.3	68
205	Metathesis strategy in nucleoside chemistry. Tetrahedron, 2005, 61, 7067-7080.	1.9	67
206	A Switchable Gold Catalyst by Encapsulation in a Selfâ€Assembled Cage. Chemistry - A European Journal, 2016, 22, 14836-14839.	3.3	67
207	A Comparative Study on (NHC)Pd(acac)Cl Complexes (NHC = N-heterocyclic carbene): Indications for the Origin of the Different Reactivity of Saturated and Unsaturated NHC in Cross-Coupling Reactions. Organometallics, 2009, 28, 5809-5813.	2.3	66
208	Dinuclear gold(<scp>i</scp>) complexes: from bonding to applications. Chemical Society Reviews, 2020, 49, 7044-7100.	38.1	66
209	Thermodynamic and kinetic studies of the complexes W(CO)3(PCy3)2L (L = H2, N2, NCCH3, pyridine,) Tj ETQq1 1	0.784314	4 rgBT /Over
210	Synthesis and Characterization of Gold(I)N-Heterocyclic Carbene Complexes Bearing Biologically Compatible Moieties. Organometallics, 2006, 25, 5824-5828.	2.3	65
211	Direct S-Arylation of Unactivated Arylsulfoxides Using [Pd(IPr*)(cin)Cl]. ACS Catalysis, 2013, 3, 2190-2193.	11.2	65
212	Hydrogenation of CC Multiple Bonds Mediated by [Pd(NHC)(PCy ₃)] (NHC=Nâ€Heterocyclic) Tj ET	QqQ 0 0 rį	gBT /Overloo
213	Highly Efficient Gold(I)-Catalyzed Regio- and Stereoselective Hydrocarboxylation of Internal Alkynes. ACS Catalysis, 2015, 5, 6918-6921.	11.2	64
214	Backbone tuning in indenylidene–ruthenium complexes bearing an unsaturated <i>N</i> -heterocyclic carbene. Beilstein Journal of Organic Chemistry, 2010, 6, 1120-1126.	2.2	63
215	Improved One-Pot Synthesis of Second-Generation Ruthenium Olefin Metathesis Catalysts. Organometallics, 2002, 21, 442-444.	2.3	62
216	Synthesis and characterization of IPrMe-containing silver(I), gold(I) and gold(III) complexes. Dalton Transactions, 2009, , 6967.	3.3	62

#	Article	IF	CITATIONS
217	Solution Thermochemical Study of Tertiary Phosphine Ligand Substitution Reactions in the Rh(acac)(CO)(PR3) System. Organometallics, 1998, 17, 534-539.	2.3	61
218	N-Heterocyclic carbene containing complexes in catalysis. Annual Reports on the Progress of Chemistry Section B, 2009, 105, 232.	0.9	61
219	Mechanism of Racemization of Chiral Alcohols Mediated by 16-Electron Ruthenium Complexes. Journal of the American Chemical Society, 2010, 132, 13146-13149.	13.7	61
220	The "weak base route―leading to transition metal–N-heterocyclic carbene complexes. Chemical Communications, 2021, 57, 3836-3856.	4.1	61
221	Synthetic, Structural, and Solution Thermochemical Studies in the Dimethylbis(phosphine)platinum(II) System. Dichotomy between Structural and Thermodynamic Trends. Organometallics, 1999, 18, 474-479.	2.3	60
222	Chemodivergent Metathesis of Dienynes Catalyzed by Ruthenium–Indenylidene Complexes: An Experimental and Computational Study. Chemistry - A European Journal, 2009, 15, 10244-10254.	3.3	60
223	How phenyl makes a difference: mechanistic insights into the ruthenium(<scp>ii</scp>)-catalysed isomerisation of allylic alcohols. Chemical Science, 2014, 5, 180-188.	7.4	60
224	General Method for the Suzuki–Miyaura Cross-Coupling of Primary Amide-Derived Electrophiles Enabled by [Pd(NHC)(cin)Cl] at Room Temperature. Organic Letters, 2017, 19, 6510-6513.	4.6	60
225	The Influence of Phosphane Ligands on the Versatility of Ruthenium–Indenylidene Complexes in Metathesis. Chemistry - A European Journal, 2010, 16, 9215-9225.	3.3	59
226	A versatile gold synthon for acetylene C–H bond activation. Dalton Transactions, 2010, 39, 10382.	3.3	59
227	Efficient C–N and C–S Bond Formation Using the Highly Active [Ni(allyl)Cl(IPr* ^{OMe})] Precatalyst. European Journal of Organic Chemistry, 2014, 2014, 3127-3131.	2.4	59
228	Synthesis and thermochemistry of HMo(CO)3C5Me5; Comparison of cyclopentadienyl and pentamethylcyclopentadienyl ligands. Journal of Organometallic Chemistry, 1985, 282, 357-362.	1.8	58
229	Structural and Thermochemical Studies of Chiral Nucleophilic Carbenes in the Cp*RuCl(L*) (Cp* =) Tj ETQq1	1 0.784314 rg 2.3	(BT_/Overlock
230	General and efficient methodology for the Suzuki–Miyaura reaction in technical grade 2-propanol. Journal of Organometallic Chemistry, 2004, 689, 3722-3727.	1.8	58
231	Improving Grubbs' II type ruthenium catalysts by appropriately modifying the N-heterocyclic carbene ligand. Chemical Communications, 2009, , 3783.	4.1	58
232	Extending the utility of [Pd(NHC)(cinnamyl)Cl] precatalysts: Direct arylation of heterocycles. Beilstein Journal of Organic Chemistry, 2012, 8, 1637-1643.	2.2	58
233	Solvent-free aryl amination catalysed by [Pd(NHC)] complexes. RSC Advances, 2013, 3, 3840.	3.6	58
234	Ruthenium catalysed C–H bond borylation. Chemical Communications, 2014, 50, 6782.	4.1	58

#	Article	IF	CITATIONS
235	Insights into the Decomposition of Olefin Metathesis Precatalysts. Angewandte Chemie - International Edition, 2014, 53, 8995-8999.	13.8	58
236	Buchwald–Hartwig cross-coupling of amides (transamidation) by selective N–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(allyl)Cl] precatalysts: catalyst evaluation and mechanism. Catalysis Science and Technology, 2020, 10, 710-716.	4.1	57
237	Ï€ Effects Involving Rhâ^'PZ3Compounds. The Quantitative Analysis of Ligand Effects (QALE). Organometallics, 2002, 21, 2758-2763.	2.3	56
238	lonic Liquid Anchored "Boomerang―Catalysts Bearing Saturated and Unsaturated NHCs: Recyclability in Biphasic Media for Cross-Metathesis. Organometallics, 2008, 27, 2287-2292.	2.3	56
239	Olefin Metathesis Featuring Ruthenium Indenylidene Complexes with a Sterically Demanding NHC Ligand. Chemistry - A European Journal, 2011, 17, 5045-5053.	3.3	56
240	Synthesis of <i>N</i> -Heterocyclic Carbene Gold Complexes Using Solution-Phase and Solid-State Protocols. Organometallics, 2013, 32, 2271-2274.	2.3	56
241	Highly Efficient and Eco-Friendly Gold-Catalyzed Synthesis of Homoallylic Ketones. ACS Catalysis, 2014, 4, 2701-2705.	11.2	56
242	[Pd(NHC)(μ-Cl)Cl]2: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products. IScience, 2020, 23, 101377.	4.1	56
243	Synthesis of BC Ring-Systems of Taxol by Ring-Closing Metathesis. Synthesis, 2000, 2000, 869-882.	2.3	55
244	Synthesis, Characterization, and Structure of [GaCl3(NHC)] Complexes. Organometallics, 2007, 26, 3256-3259.	2.3	55
245	Synthetic routes to [Au(NHC)(OH)] (NHC = N-heterocyclic carbene) complexes. Dalton Transactions, 2012, 41, 5461.	3.3	55
246	POM@IL-MOFs $\hat{a} \in \hat{a}$ inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. Catalysis Science and Technology, 2017, 7, 1478-1487.	4.1	55
247	A critical review of palladium organometallic anticancer agents. Cell Reports Physical Science, 2021, 2, 100446.	5.6	55
248	Enthalpies of reaction of ruthenium complex Cp*Ru(CH3CN)3+O3SCF3- (Cp* = .eta.5-C5Me5) with arenes. Solution thermochemical study of arene binding to the Cp*Ru+ fragment. Organometallics, 1992, 11, 3947-3953.	2.3	54
249	A combined mechanistic and computational study of the gold(I)-catalyzed formation of substituted indenes. Organic and Biomolecular Chemistry, 2011, 9, 101-104.	2.8	54
250	From Olefin Metathesis Catalyst to Alcohol Racemization Catalyst in One Step. Angewandte Chemie - International Edition, 2012, 51, 1042-1045.	13.8	54
251	A simple synthetic entryway into palladium cross-coupling catalysis. Chemical Communications, 2017, 53, 7990-7993.	4.1	54
252	A Mechanistically and Operationally Simple Route to Metal–Nâ€Heterocyclic Carbene (NHC) Complexes. Chemistry - A European Journal, 2020, 26, 4515-4519.	3.3	54

#	Article	IF	CITATIONS
253	Solution Thermochemical Study of Tertiary Phosphine Ligand Substitution Reactions in the RhCl(CO)(PR3)2System. Organometallics, 1996, 15, 4301-4306.	2.3	53
254	N-Heterocyclic carbene-containing complexes in catalysis. Annual Reports on the Progress of Chemistry Section B, 2008, 104, 184.	0.9	53
255	Activation of Hydrogen by Palladium(0): Formation of the Mononuclear Dihydride Complex <i>trans</i> â€{Pd(H) ₂ (IPr)(PCy ₃)]. Angewandte Chemie - International Edition, 2009, 48, 5182-5186.	13.8	53
256	Ligand influence in the selective gold-mediated synthesis of allenes. Chemical Communications, 2010, 46, 9113.	4.1	53
257	Enthalpies of Reaction of ((p-cymene)RuCl2)2 with Monodentate Tertiary Phosphine Ligands. Importance of Both Steric and Electronic Ligand Factors in a Ruthenium(II) System. Organometallics, 1995, 14, 4611-4616.	2.3	52
258	Convenient Synthesis of Ruthenium(II) Dihydride Phosphine Complexes Ru(H)2(PP)2and Ru(H)2(PR3)x(x=) Tj ET	QqQ 0 0 r _ξ	gBT_/Overlock
259	Synthetic, Thermochemical, and Catalytic Studies Involving Novel R2P(ORf) [R = Alkyl or Aryl; Rf = CH2CH2(CF2)5CF3] Ligands. Organometallics, 1998, 17, 5018-5024.	2.3	52
260	Enhanced regioselectivity of rhodium-catalysed alkene hydroboration in supercritical carbon dioxide. Chemical Communications, 2000, , 347-348.	4.1	52
261	Synthesis of Macrolide Analogues of Sanglifehrin by RCM:Â Unique Reactivity of a Ruthenium Carbene Complex Bearing an Imidazol-2-ylidene Ligand. Journal of Organic Chemistry, 2000, 65, 9255-9260.	3.2	52
262	10ÂÂCarbenes: reactivity and catalysis. Annual Reports on the Progress of Chemistry Section B, 2004, 100, 231-249.	0.9	52
263	Halide exchanged Hoveyda-type complexes in olefin metathesis. Beilstein Journal of Organic Chemistry, 2010, 6, 1091-1098.	2.2	52
264	Ruthenium Olefin Metathesis Catalysts with N-Heterocyclic Carbene Ligands Bearing <i>N</i> -Naphthyl Side Chains. Organometallics, 2010, 29, 775-788.	2.3	52
265	Bulky <i>N</i> -Heterocyclic Carbene IPr* in Selected Organo- and Transition Metal-Mediated Catalytic Applications. Organometallics, 2012, 31, 3259-3263.	2.3	52
266	Synthesis of N-heterocyclic carbene gold(I) complexes. Nature Protocols, 2021, 16, 1476-1493.	12.0	52
267	From Carbohydrates to Polyoxygenated Cyclooctenes via Ring-Closing Metathesis. Journal of Organic Chemistry, 2001, 66, 4094-4096.	3.2	51
268	Unusual reactivities of N-heterocyclic carbenes upon coordination to the platinum(ii)–dimethyl moiety. Chemical Communications, 2010, 46, 1050.	4.1	51
269	Effect of Electronic Enrichment of NHCs on the Catalytic Activity of [Pd(NHC)(acac)Cl] in Buchwald–Hartwig Coupling. Organometallics, 2013, 32, 7547-7551.	2.3	51
270	Gold–Acetonyl Complexes: From Sideâ€₽roducts to Valuable Synthons. Chemistry - A European Journal, 2015, 21, 5403-5412.	3.3	51

#	Article	IF	CITATIONS
271	On the Mechanism of the Digold(I)–Hydroxideâ€Catalysed Hydrophenoxylation of Alkynes. Chemistry - A European Journal, 2016, 22, 1125-1132.	3.3	51
272	Heat of reaction of (norbornadiene)molybdenum tetracarbonyl with monodentate and bidentate ligands. Solution thermochemical study of ligand substitution in the complexes cis-L2Mo(CO)4. Inorganic Chemistry, 1988, 27, 81-85.	4.0	50
273	Synthetic, Structural, and Solution Calorimetric Studies of Pt(CH3)2(PP) Complexesâ€. Organometallics, 2000, 19, 1427-1433.	2.3	50
274	N-Heterocyclic Carbene Complexes of Au, Pd, and Pt as Effective Catalysts in Organic Synthesis. Topics in Current Chemistry, 2011, 302, 131-155.	4.0	50
275	Synthesis of (diarylmethyl)amines using Ni-catalyzed arylation of C(sp ³)–H bonds. Chemical Science, 2015, 6, 4973-4977.	7.4	50
276	Synthesis of phosphorus esters by transesterification mediated by N-heterocyclic carbenes (NHCs). Chemical Communications, 2005, , 5456.	4.1	49
277	A pyridine-containing ruthenium–indenylidene complex: Synthesis and activity in ring-closing metathesis. Journal of Organometallic Chemistry, 2006, 691, 5444-5447.	1.8	49
278	Insertion of a N-Heterocyclic Carbene (NHC) into a Platinumâ^'Olefin Bond. Organometallics, 2007, 26, 3286-3288.	2.3	49
279	Oxygen Binding to [Pd(L)(L′)] (L= NHC, L′ = NHC or PR3, NHC =N-Heterocyclic Carbene). Synthesis and Structure of a Paramagnetictrans-[Pd(NHC)2(η1-O2)2] Complex. Journal of the American Chemical Society, 2011, 133, 1290-1293.	13.7	49
280	Steric and Electronic Parameters of a Bulky yet Flexible N-Heterocyclic Carbene: 1,3-Bis(2,6-bis(1-ethylpropyl)phenyl)imidazol-2-ylidene (IPent). Organometallics, 2013, 32, 3249-3252.	2.3	49
281	Gold-promoted styrene polymerization. Chemical Communications, 2008, , 759-761.	4.1	48
282	Gold(I) atalyzed Protodecarboxylation of (Hetero)Aromatic Carboxylic Acids. Chemistry - A European Journal, 2013, 19, 14034-14038.	3.3	48
283	Efficient synthesis of various acycloalkenyl derivatives of pyrimidine using cross-metathesis and Pd(0) methodologies. Tetrahedron, 2005, 61, 537-544.	1.9	47
284	Phosphabicyclononane-Containing Ru Complexes:  Efficient Pre-Catalysts for Olefin Metathesis Reactions. Journal of Organic Chemistry, 2008, 73, 259-263.	3.2	47
285	Luminescent Hyperbranched Polymers: Combining Thiol-Yne Chemistry with Gold-Mediated Câ^'H Bond Activation. Organometallics, 2011, 30, 1315-1318.	2.3	47
286	Heats of reaction of (toluene)molybdenum tricarbonyl with substituted arenes, sodium cyclopentadienide, nitriles, isocyanides, and other ligands. Solution thermodynamic study of ligand exchange in the complexes fac-L3Mo(CO)3. Organometallics, 1986, 5, 2529-2537.	2.3	46
287	What can metal-ligand bonding energetics teach us about stoichiometric and catalytic organometallic chemistry?. Pure and Applied Chemistry, 1989, 61, 1665-1672.	1.9	46
288	Rutheniumâ€Indenylidene Complexes: Scope in Crossâ€Metathesis Transformations. Advanced Synthesis and Catalysis, 2008, 350, 2959-2966.	4.3	46

#	Article	IF	CITATIONS
289	Highly Active Well-Defined Palladium Precatalysts for the Efficient Amination of Aryl Chlorides. Organometallics, 2011, 30, 4432-4436.	2.3	46
290	Well-defined NHC-rhodium hydroxide complexes as alkenehydrosilylation and dehydrogenative silylation catalysts. Dalton Transactions, 2013, 42, 270-276.	3.3	46
291	Addition of Aldehydes and Acyl Chlorides to [Rh(PiPr3)2Cl]2. Thermodynamics and Molecular and Crystal Structures of Rh(PiPr3)2ClX[C(O)Ph] (X = H, Cl). Organometallics, 1995, 14, 4929-4936.	2.3	45
292	Catalytic gold rush. Nature, 2007, 445, 496-497.	27.8	45
293	Simple synthetic routes to ruthenium–indenylidene olefin metathesis catalysts. Chemical Communications, 2011, 47, 5022.	4.1	45
294	Auâ‹â‹â‹Hâ^'C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angewandte Chemie - International Edition, 2021, 60, 21014-21024.	13.8	45
295	Spectroscopic detection of organolanthanide dihydrogen and olefin complexes. Journal of the American Chemical Society, 1989, 111, 8538-8540.	13.7	44
296	Terminal Platinum(II) Phosphido Complexes:Â Synthesis, Structure, and Thermochemistry. Organometallics, 1998, 17, 652-660.	2.3	44
297	Ruthenium Complexes Bearing Two N-Heterocyclic Carbene Ligands in Low Catalyst Loading Olefin Metathesis Reactions. Organometallics, 2010, 29, 3007-3011.	2.3	44
298	Synthesis, Characterization, and Catalytic Behavior of Ruthenium(II) Schiff Base Complexes. Organometallics, 1997, 16, 5120-5123.	2.3	43
299	Effect of Ligand Bulk in Ruthenium-Catalyzed Olefin Metathesis: IPr* vs IPr. Organometallics, 2012, 31, 6514-6517.	2.3	43
300	Polymerization of cyclic esters using N-heterocyclic carbene carboxylate catalysts. Polymer Chemistry, 2013, 4, 2414.	3.9	43
301	Efficient ruthenium-catalysed S–S, S–Si and S–B bond forming reactions. Chemical Communications, 2013, 49, 5829.	4.1	43
302	Mechanism of the [(NHC)AuI]-Catalyzed Rearrangement of Allylic Acetates. A DFT Study. Organic Letters, 2009, 11, 81-84.	4.6	42
303	Highly Active Iridium(III)–NHC System for the Catalytic B–N Bond Activation and Subsequent Solvolysis of Ammonia–Borane. Organometallics, 2011, 30, 5487-5492.	2.3	42
304	Simple Synthetic Routes to Carbeneâ€Mâ€Amido (M=Cu, Ag, Au) Complexes for Luminescence and Photocatalysis Applications. Chemistry - A European Journal, 2021, 27, 11904-11911.	3.3	42
305	Relative Binding Energies of Sterically Demanding Tertiary Phosphine Ligands to the Cp*RuCl (Cp* =) Tj ETQq1 1 (Complexes. Organometallics, 1994, 13, 4781-4786.).784314 2.3	rgBT /Over <mark>lo</mark> 41
306	Thermodynamics of Addition of CO, Isocyanide, and H2 to Rh(PR3)2Cl. Journal of the American Chemical Society, 1995, 117, 5082-5088.	13.7	41

#	Article	IF	CITATIONS
307	Structural and Solution Calorimetric Studies of Sulfur Binding to Nucleophilic Carbenes. Inorganic Chemistry, 2000, 39, 1042-1045.	4.0	41
308	A Modular Synthetic Approach toward Exhaustively Stereodiversified Ligand Libraries. Organic Letters, 2000, 2, 3999-4002.	4.6	41
309	Synthesis of unprotected and borane-protected cyclic phosphines using Ru? and Mo? based olefin metathesis catalystsThis is one of a number of contributions from the current members of the Dyson Perrins Laboratory to mark the end of almost 90 years of organic chemistry research in that building, as all its current academic staff move across South Parks Road to a new purpose-built laboratory	2.8	41
310	Synthesis, Characterization, and Reactivity of N-Heterocyclic Carbene Palladium(II) Hydroxide Dimers. Organometallics, 2011, 30, 4494-4496.	2.3	41
311	Simple Synthetic Routes to Nâ€Heterocyclic Carbene Gold(I)–Aryl Complexes: Expanded Scope and Reactivity. Chemistry - A European Journal, 2020, 26, 5541-5551.	3.3	41
312	A Highly Efficient Palladium/Imidazolium Salt System for Catalytic Heck Reactions. Synlett, 2001, 2001, 1539-1542.	1.8	40
313	Thermodynamic, Kinetic, and Computational Study of Heavier Chalcogen (S, Se, and Te) Terminal Multiple Bonds to Molybdenum, Carbon, and Phosphorus. Inorganic Chemistry, 2008, 47, 2133-2141.	4.0	40
314	N-Heterocyclic Carbeneâ^'Ruthenium Complexes for the Racemization of Chiral Alcohols. Journal of Organic Chemistry, 2010, 75, 2039-2043.	3.2	40
315	Steric and Electronic Parameters Characterizing Bulky and Electron-Rich Dialkylbiarylphosphines. Organometallics, 2011, 30, 1668-1676.	2.3	40
316	The role of silver additives in gold-mediated C–H functionalisation. Beilstein Journal of Organic Chemistry, 2011, 7, 892-896.	2.2	40
317	N-Heterocyclic carbene complexes enabling the α-arylation of carbonyl compounds. Chemical Communications, 2021, 57, 4354-4375.	4.1	40
318	Thermochemical Investigation of Phosphine Ligand Substitution Reactions Involving trans-(PR3)2Cl2RuCHâ^CHCPh2 Complexes. Organometallics, 1998, 17, 5565-5568.	2.3	39
319	Ruthenium(II) chemistry of phosphorus-based ligands, Ph2PN(R)PPh2 (R=Me or Ph) and Ph2PN(Ph)P(E) Ph2 (E=S or Se). Solution thermochemical study of ligand substitution reactions in the Cp′RuCl(COD) (Cp′=Cp, Cp*; COD=cyclooctadiene) system. Journal of Organometallic Chemistry, 2000, 599, 159-165.	1.8	39
320	Triple Ring Closing Metathesis Reaction:  Synthesis of Adjacent Cyclic Ethers. Organic Letters, 2001, 3, 1989-1991.	4.6	39
321	Cross Metathesis Allowing the Conversion of a Ruthenium Indenylidene Complex into Grubbs' Catalyst. Advanced Synthesis and Catalysis, 2004, 346, 917-920.	4.3	39
322	Preparation of acyclo nucleoside phosphonate analogues based on cross-metathesis. Tetrahedron, 2008, 64, 3517-3526.	1.9	39
323	Polymerization of Racemic β-Butyrolactone Using Gold Catalysts: A Simple Access to Biodegradable Polymers. Organometallics, 2011, 30, 2650-2653.	2.3	39
324	The Role of Metal Hydroxide Complexes in Late Transition Metalâ€Mediated Transmetalation Reaction: The Case of Gold. Advanced Synthesis and Catalysis, 2012, 354, 2380-2386.	4.3	39

#	Article	IF	CITATIONS
325	Hydroxide complexes of the late transition metals: Organometallic chemistry and catalysis. Coordination Chemistry Reviews, 2017, 353, 278-294.	18.8	39
326	Well-defined [Rh(NHC)(OH)] complexes enabling the conjugate addition of arylboronic acids to α,β-unsaturated ketones. Organic and Biomolecular Chemistry, 2011, 9, 7038.	2.8	38
327	Chemoselective Oxidation of Secondary Alcohols Using a Ruthenium Phenylindenyl Complex. Organometallics, 2013, 32, 660-664.	2.3	38
328	Iridium(I) Hydroxides: Powerful Synthons for Bond Activation. Chemistry - A European Journal, 2013, 19, 7904-7916.	3.3	38
329	Recyclable NHC Catalyst for the Development of a Generalized Approach to Continuous Buchwald–Hartwig Reaction and Workup. Organic Process Research and Development, 2016, 20, 551-557.	2.7	38
330	Design Concepts for N-Heterocyclic Carbene Ligands. Trends in Chemistry, 2020, 2, 1096-1113.	8.5	38
331	Understanding existing and designing novel synthetic routes to Pd-PEPPSI-NHC and Pd-PEPPSI-PR ₃ pre-catalysts. Chemical Communications, 2020, 56, 5953-5956.	4.1	38
332	Enthalpies of Reaction of Cp'Ru(COD)Cl (Cp' = C5H5, C5Me5; COD = Cyclooctadiene) with P(p-XC6H4)3 (X) Tj E Reaction. Organometallics, 1995, 14, 5290-5297.	TQq0 0 0 2.3	rgBT /Overlo 37
333	The Meyer–Schuster rearrangement: a new synthetic strategy leading to prostaglandins and their drug analogs, Bimatoprost and Latanoprost. Tetrahedron, 2010, 66, 7472-7478.	1.9	37
334	The Fluorideâ€Free Transmetalation of Organosilanes to Gold. Chemistry - A European Journal, 2012, 18, 14923-14928.	3.3	37
335	A Highly Active Cationic Ruthenium Complex for Alkene Isomerisation: A Catalyst for the Synthesis of High Value Molecules. ChemCatChem, 2013, 5, 2848-2851.	3.7	37
336	Chemoselective Ruthenium atalysed Reduction of Carboxylic Acids. Advanced Synthesis and Catalysis, 2014, 356, 308-312.	4.3	37
337	2â€Methyltetrahydrofuran (2â€MeTHF): A Green Solvent for Pdâ^'NHCâ€Catalyzed Amide and Ester Suzukiâ€Miyaura Crossâ€Coupling by Nâ^'C/Oâ^'C Cleavage. Advanced Synthesis and Catalysis, 2019, 361, 5654-5660.	4.3	37
338	Heats of the reactions of tricarbonyl(naphthalene)chromium, tricarbonyl(cycloheptatriene)chromium, tricarbonyl(cycloheptatriene)tungsten, and tricarbonyltris(ethylcyanide)tungsten with pyridine, phosphines, phosphites, and other ligands. Comparative thermochemical study of L3M(CO)3 complexes (M = Cr, Mo, W). Inorganic Chemistry, 1992,	4.0	36
339	31, 4885-4889. Catalytic deuteration of silanes mediated by N-heterocyclic carbene-Ir(iii) complexes. Chemical Communications, 2011, 47, 9723.	4.1	36
340	Regioselective ruthenium catalysed H–D exchange using D ₂ O as the deuterium source. Organic and Biomolecular Chemistry, 2014, 12, 8683-8688.	2.8	36
341	Olefin metathesis in air. Beilstein Journal of Organic Chemistry, 2015, 11, 2038-2056.	2.2	36
342	Gold(I)â€Catalysed Cyclisation of Alkynoic Acids: Towards an Efficient and Ecoâ€Friendly Synthesis of γâ€, δ― and ϵâ€Lactones. Advanced Synthesis and Catalysis, 2016, 358, 3857-3862.	4.3	36

#	Article	IF	CITATIONS
343	Towards environmentally friendlier Suzuki–Miyaura reactions with precursors of Pd-NHC (NHC =) Tj ETQq1 1 (0.784314 9.0	rgBT/Overlo
344	Thermodynamics of Phosphine Coordination to the [PNP]RhIFragment:Â An Example of the Importance of Reorganization Energies in the Assessment of MetalⰒLigand "Bond Strengths― Journal of the American Chemical Society, 1998, 120, 7806-7815.	13.7	35
345	Synthetic, Thermochemical, and Catalytic Studies of Fluorinated Tertiary Phosphine Ligands R2PRf[R = Cy, Ph,iPr; Rf= CHâ€~2CH2(CF2)5CF3] in Rhodium Systems. Inorganic Chemistry, 1999, 38, 5277-5281.	4.0	35
346	New [Au(NHC)(OH)] Complexes for Silver-Free Protocols. Organometallics, 2014, 33, 421-424.	2.3	35
347	From a Decomposition Product to an Efficient and Versatile Catalyst: The [Ru(η ⁵ -indenyl)(PPh ₃) ₂ Cl] Story. Accounts of Chemical Research, 2014, 47, 3089-3101.	15.6	35
348	The heats of reaction of phosphines and phosphites with toluene-molybdenum tricarbonyl. Importance of both steric and electronic factors in determining the Moî—,PR3 bond strength. Journal of Organometallic Chemistry, 1985, 290, 365-373.	1.8	34
349	Synthesis and structural characterization of a tetranuclear organolanthanide hydrazido complex. Organometallics, 1992, 11, 1011-1013.	2.3	34
350	An efficient and mild protocol for the α-arylation of ketones mediated by an (imidazol-2-ylidene)palladium(acetate) system. Journal of Organometallic Chemistry, 2005, 690, 5832-5840.	1.8	34
351	The Use of N-Heterocyclic Carbenes as Ligands in Palladium-Mediated Catalysis. Topics in Organometallic Chemistry, 0, , 241-278.	0.7	34
352	A novel route for large-scale synthesis of [Au(NHC)(OH)] complexes. Polyhedron, 2014, 84, 59-62.	2.2	34
353	General and Mild Ni ⁰ â€Catalyzed αâ€Arylation of Ketones Using Aryl Chlorides. Chemistry - A European Journal, 2015, 21, 3906-3909.	3.3	34
354	Suzuki–Miyaura cross-coupling of esters by selective O–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(μ-Cl)Cl] ₂ precatalysts: catalyst evaluation and mechanism. Catalysis Science and Technology, 2021, 11, 3189-3197.	4.1	34
355	Continuous Flow Synthesis of Metal–NHC Complexes**. Chemistry - A European Journal, 2021, 27, 5653-5657.	3.3	34
356	Thermodynamics of Addition of H2, CO, N2, and Câ^'H Bonds to M(PiPr3)2Cl (M = Ir, Rh). An Unprecedented Metalâ^'Carbonyl Bond Strength. Journal of the American Chemical Society, 1998, 120, 9256-9266.	13.7	33
357	8ÂÂCarbene and transition metal-mediated transformations. Annual Reports on the Progress of Chemistry Section B, 2005, 101, 171.	0.9	33
358	Ruthenium Phenylindenyl Complex as an Efficient Transfer Hydrogenation Catalyst. Advanced Synthesis and Catalysis, 2012, 354, 3036-3044.	4.3	33
359	Palladium-N-heterocyclic carbene (NHC) catalyzed C–N bond formation in a continuous flow microreactor. Effect of process parameters and comparison with batch operation. Chemical Engineering Journal, 2013, 223, 578-583.	12.7	33
360	Synthesis of Au ^I ―and Au ^{III} â€Bis(NHC) Complexes: Ligand Influence on Oxidative Addition to Au ^I Species. European Journal of Inorganic Chemistry, 2016, 2016, 4111-4122.	2.0	33

#	Article	IF	CITATIONS
361	Expeditious convergent procedure for the preparation of bis(POC) prodrugs of new (E)-4-phosphono-but-2-en-1-yl nucleosides. Tetrahedron, 2011, 67, 5319-5328.	1.9	32
362	Gold-mediated synthesis of α-ionone. Tetrahedron Letters, 2011, 52, 1124-1127.	1.4	32
363	CO ₂ fixation employing an iridium(<scp>i</scp>)-hydroxide complex. Chemical Communications, 2014, 50, 286-288.	4.1	32
364	Fluoroalkyl <i>N</i> -Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catalysis, 2021, 11, 8527-8537.	11.2	32
365	Enthalpies of reaction of ruthenium complex Cp*Ru(COD)Cl (Cp* = .eta.5-C5Me5; COD = cyclooctadiene) with chelating tertiary phosphine ligands. Solution thermochemical investigation of ligand substitution and ring strain energies in Cp*Ru(PP)Cl complexes. Organometallics, 1994, 13, 669-675.	2.3	31
366	New Strategy for the Construction of a Monotetrahydrofuran Ring inAnnonaceousAcetogenin Based on a Ruthenium Ring-Closing Metathesis:Â Application to the Synthesis of Solamin. Journal of Organic Chemistry, 2004, 69, 5770-5773.	3.2	31
367	Solution Calorimetric Study of Ligand Exchange Reactions in the [Au(L)Cl] System (L = Phosphine and) Tj ETQq1	1 0.78431 2.3	4 rgBT /Ovei
368	Synthesis, Structure and Catalytic Activity of NHC–Ag ^I Carboxylate Complexes. Chemistry - A European Journal, 2016, 22, 13320-13327.	3.3	31
369	Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) Nâ€Heterocyclic Carbene Complexes. ChemCatChem, 2016, 8, 3381-3388.	3.7	31
370	The anticancer activity of an air-stable Pd(<scp>i</scp>)-NHC (NHC = N-heterocyclic carbene) dimer. Chemical Communications, 2020, 56, 12238-12241.	4.1	31
371	Enthalpies of reaction of (diene)- and (enone)iron tricarbonyl complexes with monodentate and bidentate ligands. Solution thermochemical study of ligand substitution in the L2Fe(CO)3 complexes. Inorganic Chemistry, 1993, 32, 2410-2415.	4.0	30
372	Enthalpies of Reaction of (.eta.5-C5H5)Ru(cyclooctadiene)Cl with Tertiary Phosphine Ligands: Ligand Substitution as a Gauge for Metal Basicity and A Linear Correlation of Bond Length and Bond Enthalpy. Organometallics, 1995, 14, 289-296.	2.3	30
373	Solution Thermochemical and Structural Studies of Ligand Substitution ofN-Pyrrolyl Phosphine Ligands in the (p-cymene)RuCl2(PR3) System. Organometallics, 1998, 17, 104-110.	2.3	30
374	Recent advances in the synthesis and derivatization of N-heterocyclic carbene metal complexes. Dalton Transactions, 2021, 50, 12058-12068.	3.3	30
375	Enthalpies of Reaction of CpRu(COD)Cl (Cp = .eta.5-C5H5; COD = Cyclooctadiene) with Chelating Tertiary Phosphine Ligands. Solution Thermochemical Investigation of Ligand Substitution and Ring Strain Energies in CpRu(R2P(CH2)nPR2)Cl Complexes. Organometallics, 1994, 13, 3621-3627.	2.3	29
376	Ruthenium–indenylidene complexes in ring opening metathesis polymerization (ROMP) reactions. Journal of Molecular Catalysis A, 2008, 283, 108-113.	4.8	29
377	Synthesis, characterization and luminescence studies of gold(I)–NHC amide complexes. Beilstein Journal of Organic Chemistry, 2013, 9, 2216-2223.	2.2	29
378	A Cationic Ruthenium Complex for the Dynamic Kinetic Resolution of Secondary Alcohols. Chemistry - A European Journal, 2014, 20, 13132-13135.	3.3	29

#	Article	IF	CITATIONS
379	Continuous Flow Metathesis for Direct Valorization of Food Waste: An Example of Cocoa Butter Triglyceride. ACS Sustainable Chemistry and Engineering, 2015, 3, 1453-1459.	6.7	29
380	The effect of shear flow on microreactor clogging. Chemical Engineering Journal, 2018, 341, 639-647.	12.7	29
381	Silver N-heterocyclic carbenes: emerging powerful catalysts. Trends in Chemistry, 2021, 3, 674-685.	8.5	29
382	The Suzuki–Miyaura Reaction Performed Using a Palladium–Nâ€Heterocyclic Carbene Catalyst and a Weak Inorganic Base. European Journal of Organic Chemistry, 2015, 2015, 1920-1924.	2.4	28
383	Using sodium acetate for the synthesis of [Au(NHC)X] complexes. Dalton Transactions, 2020, 49, 9694-9700.	3.3	28
384	Silver-catalyzed site-selective C(sp3)â^'H benzylation of ethers with N-triftosylhydrazones. Nature Communications, 2022, 13, 1674.	12.8	28
385	Hydrogen bonding-enabled gold catalysis: ligand effects in gold-catalyzed cycloisomerizations in hexafluoroisopropanol (HFIP). Chemical Communications, 2022, 58, 8516-8519.	4.1	28
386	Organoruthenium thermochemistry. Enthalpies of reaction of (Cp*RuCl)4 and Cp*Ru(COD)Cl (Cp* =) Tj ETQq0 C 12, 4305-4311.	0 rgBT /C 2.3	overlock 10 Th 27
387	Solution Thermochemical Study of a Fluorous Tertiary Phosphine Ligand in Rhodium and Ruthenium Systems. Organometallics, 1998, 17, 452-456.	2.3	27
388	Reactivity of a N-heterocyclic carbene, 1,3-di-(1-adamantyl) imidazol-2-ylidene, with a pseudo-acid: structural characterization of Claisen condensation adduct. Chemical Communications, 2004, , 2890.	4.1	27
389	Furan- and thiophene-functionalised bis-carbene ligands: Synthesis, silver(I) complexes, and catalysis. Journal of Organometallic Chemistry, 2005, 690, 6133-6142.	1.8	27
390	Olefin Metathesis Route to Antiviral Nucleosides. Current Topics in Medicinal Chemistry, 2005, 5, 1541-1558.	2.1	27
391	Ringâ€Rearrangement Metathesis (RRM) Mediated by Rutheniumâ€Indenylidene Complexes. European Journal of Organic Chemistry, 2010, 2010, 937-943.	2.4	27
392	Gold(I)â€Assisted αâ€Allylation of Enals and Enones with Alcohols. Angewandte Chemie - International Edition, 2015, 54, 14885-14889.	13.8	27
393	Metal and Ancillary Coordination Effects on Organolanthanide—Ligand Bond Enthalpies. ACS Symposium Series, 1990, , 159-174.	0.5	26
394	Organoiron Thermochemistry. Solution Thermochemical Investigation of Tertiary Phosphine Ligand Electronic Effects in trans-(P(p-XC6H4)3)2Fe(CO)3 Complexes. Organometallics, 1995, 14, 1327-1332.	2.3	26
395	N-Pyrrolyl Phosphines: Enhanced ï€-Acceptor CharacterviaCarboalkoxy Substitution. Organometallics, 1997, 16, 3377-3380	2.3	26
396	Synthesis and Reactivity of the Ruthenium(II) Dihydride Ru(Ph2PNMeNMePPh2)2H2. Organometallics, 1998, 17, 3875-3882.	2.3	26

#	Article	IF	CITATIONS
397	Click Azideâ€Alkyne Cycloaddition for the Synthesis of <scp>D</scp> â€(–)â€1,4â€Disubstituted Triazoloâ€Carbanucleosides. European Journal of Organic Chemistry, 2009, 2009, 1880-1888.	2.4	26
398	Gold(I) atalyzed Tandem Alkoxylation/Lactonization of γâ€Hydroxyâ€Î±,βâ€Acetylenic Esters. Advanced Synth and Catalysis, 2011, 353, 1575-1583.	esis 4.3	26
399	Exploring the Limits of Catalytic Ammonia–Borane Dehydrogenation Using a Bis(<i>N</i> -heterocyclic) Tj ETQq1	1	314 rgBT /O
400	Gold(<scp>i</scp>)-catalysed dehydrative formation of ethers from benzylic alcohols and phenols. Green Chemistry, 2015, 17, 3819-3825.	9.0	26
401	Catalytic α-Arylation of Imines Leading to N-Unprotected Indoles and Azaindoles. ACS Catalysis, 2016, 6, 2930-2938.	11.2	26
402	Goldâ€NHC complexes as potent bioactive compounds. ChemistrySelect, 2016, 1, 76-80.	1.5	26
403	Estimating the Effective Steric Impact of PtBu2Me, PiPr3, and PCy3. Organometallics, 1996, 15, 4900-4903.	2.3	25
404	Synthesis of (±)-1,2,3-triazolo-3′-deoxy-4′-hydroxymethyl carbanucleosides via â€~click' cycloaddition. Tetrahedron, 2009, 65, 1162-1170.	1.9	25
405	Modified [(IPr)Pd(Râ€acac)Cl] Complexes: Influence of the acac Substitution on the Catalytic Activity in Aryl Amination. Chemistry - an Asian Journal, 2010, 5, 841-846.	3.3	25
406	Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene. Journal of Organometallic Chemistry, 2015, 780, 43-48.	1.8	25
407	Organoruthenium Thermochemistry. Enthalpies of Reaction of Cpâ€~Ru(COD)Cl (Cpâ€~ = η5-C5H5and η5-C5Me5) with Tertiary Phosphite Ligands. Organometallics, 1996, 15, 5209-5215.	2.3	24
408	Solution Calorimetric Investigation of Oxidative Addition of HEAr (E = O, S, Se; Ar = C6H4X, X = CH3, H,) Tj ETQqO Organometallics, 1998, 17, 3516-3521.	0 0 rgBT 2.3	Overlock 10 24
409	Binding of Specialty Phosphines to Metals:  Synthesis, Structure, and Solution Calorimetry of the Phosphirane Complex [PtMe2(iPrBABAR-Phos)2]. Organometallics, 2003, 22, 2202-2208.	2.3	24
410	Synthesis of a hyaluronan neoglycopolymer by ring-opening metathesis polymerizationElectronic supplementary information (ESI) available: spectral data for compound 11, glycomonomer 14 and glycopolymer [A]. See http://www.rsc.org/suppdata/cc/b3/b301734f/. Chemical Communications, 2003, , 1518	4.1	24
411	Palladium atalyzed αâ€Arylation of Arylketones at Low Catalyst Loadings. Chemistry - A European Journal, 2014, 20, 17272-17276.	3.3	24
412	Arylation of Amines in Alkane Solvents by using Wellâ€Defined Palladium–Nâ€Heterocyclic Carbene Complexes. ChemCatChem, 2015, 7, 4021-4024.	3.7	24
413	How easy is CO ₂ fixation by M–C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?. Organic Chemistry Frontiers, 2016, 3, 19-23.	4.5	24
414	Straightforward access to chalcogenoureas derived from N-heterocyclic carbenes and their coordination chemistry. Dalton Transactions, 2020, 49, 12068-12081.	3.3	24

STEVEN P. NOLAN

#	Article	IF	CITATIONS
415	Heats of reaction of [Mo(CO)2Cp*]2 (Cp* = C5H5, C5Me5, C9H7) with carbon monoxide, acetylene, and phenylacetylene. Thermochemical investigation of the molybdenum-molybdenum triple bond. Inorganic Chemistry, 1986, 25, 4446-4448.	4.0	23
416	Enthalpies of reaction of (benzylideneacetone)iron tricarbonyl, (BDA)Fe(CO)3, with phosphine ligands. Thermodynamic insights into iron chemistry. Organometallics, 1992, 11, 3483-3486.	2.3	23
417	Correlation between Structural and Solution Calorimetric Data for Cp*Ru(PR3)2Cl (Cp* = C5Me5) Complexes. Organometallics, 1999, 18, 2357-2361.	2.3	23
418	Gold(I) atalyzed Stereoselective Synthesis of Alkenyl Phosphates by Hydrophosphoryloxylation. Chemistry - A European Journal, 2012, 18, 1064-1067.	3.3	23
419	Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications. Molecular Catalysis, 2017, 440, 184-189.	2.0	23
420	Gold― <i>N</i> â€Heterocyclic Carbene Complexes of Mineral Acids. ChemCatChem, 2017, 9, 117-120.	3.7	23
421	Palladate Precatalysts for the Formation of C–N and C–C Bonds. Organometallics, 2019, 38, 2812-2817.	2.3	23
422	Gold(<scp>i</scp>) catalysed regio- and stereoselective intermolecular hydroamination of internal alkynes: towards functionalised azoles. Organic and Biomolecular Chemistry, 2019, 17, 3805-3811.	2.8	23
423	Dinuclear Gold(I) Complexes Bearing Alkyl-Bridged Bis(N-heterocyclic carbene) Ligands as Catalysts for Carboxylative Cyclization of Propargylamine: Synthesis, Structure, and Kinetic and Mechanistic Comparison to the Mononuclear Complex [Au(IPr)Cl]. Organometallics, 2020, 39, 2907-2916.	2.3	23
424	Solution Thermochemical Study of Ligand Steric Influences on Substitution Enthalpies in the L2Fe(CO)3 System. Organometallics, 1995, 14, 3791-3797.	2.3	22
425	N-Heterocyclic Carbenes as Organic Catalysts. , 2006, , 275-296.		22
426	Flexible cycloalkyl-substituted N-heterocyclic carbenes. Dalton Transactions, 2010, 39, 3923.	3.3	22
427	E/Z selectivity in ruthenium-mediated cross metathesis. Catalysis Science and Technology, 2012, 2, 1027.	4.1	22
428	Deuteration of boranes: catalysed versus non-catalysed processes. Dalton Transactions, 2013, 42, 4105.	3.3	22
429	Mild, Aqueous αâ€Arylation of Ketones: Towards New Diversification Tools for Halogenated Metabolites and Drug Molecules. Chemistry - A European Journal, 2017, 23, 3832-3836.	3.3	22
430	Inner-Sphere versus Outer-Sphere Coordination of BF ₄ [–] in a NHC-Gold(I) Complex. Organometallics, 2017, 36, 2861-2869.	2.3	22
431	Synthesis and reactivity of [Au(NHC)(Bpin)] complexes. Chemical Communications, 2019, 55, 6799-6802.	4.1	22
432	A general protocol for the synthesis of Pt-NHC (NHC = N-heterocyclic carbene) hydrosilylation catalysts. Dalton Transactions, 2020, 49, 14673-14679.	3.3	22

#	Article	IF	CITATIONS
433	Solution Thermochemical and Structural Studies of Ligand Substitution of N-Pyrrolyl-Substituted Phosphine Ligands in the Cpâ€~Ru(PR3)2Cl (Cpâ€~ = ŀ5-C5H5 and ŀ5-C5Me5) Systems. Organometallics, 1996 4020-4029.	, 15,2.3	21
434	Assessing the stereoelectronic properties of pyrrolyl phosphines and related ligands. The quantitative analysis of ligand effects (QALE). Perkin Transactions II RSC, 2000, , 1349-1357.	1.1	21
435	A new route to acyclic nucleosides via palladium-mediated allylic alkylation and cross-metathesis. Tetrahedron Letters, 2003, 44, 9177-9180.	1.4	21
436	Synthesis of l-cyclopentenyl nucleosides using ring-closing metathesis and palladium-mediated allylic alkylation methodologies. Tetrahedron, 2004, 60, 8397-8404.	1.9	21
437	Palladium-catalyzed Reactions Using NHC Ligands. Topics in Organometallic Chemistry, 2006, , 47-82.	0.7	21
438	N-Heterocyclic carbenes: Advances in transition metal and organic catalysis. Annual Reports on the Progress of Chemistry Section B, 2006, 102, 168.	0.9	21
439	Accelerating influence of the gem-difluoromethylene group in a ring-closing olefin metathesis reaction. A Thorpe–Ingold effect?. Chemical Communications, 2013, 49, 7201.	4.1	21
440	Synthesis, characterisation, and oxygen atom transfer reactions involving the first gold(i)-alkylperoxo complexes. Chemical Communications, 2013, 49, 10745.	4.1	21
441	Synthesis and broad spectrum antiviral evaluation of bis(POM) prodrugs of novel acyclic nucleosides. European Journal of Medicinal Chemistry, 2013, 67, 398-408.	5.5	21
442	From ruthenium olefin metathesis catalyst to (η5-3-phenylindenyl)hydrido complex via alcoholysis. Chemical Communications, 2014, 50, 2205.	4.1	21
443	Insights into the Catalytic Activity of [Pd(NHC)(cin)Cl] (NHC=IPr, IPr ^{Cl} , IPr ^{Br}) Complexes in the Suzuki–Miyaura Reaction. ChemCatChem, 2018, 10, 601-611.	3.7	21
444	Solution thermochemical study of ligand substitution reaction of novel pyrrolyl-substituted tertiary phosphine ligands in the L2Fe(CO)3 system. Inorganica Chimica Acta, 1996, 252, 107-113.	2.4	20
445	Enthalpies of Reaction of Cpâ€~Ru(COD)Cl (Cpâ€~ = C5H5, C5Me5; COD = Cyclooctadiene) with Ï€-Acceptor Chelating Phosphine Ligands. Organometallics, 1998, 17, 3000-3005.	2.3	20
446	Ruthenium Hydroxide Complexes in the Racemization of Secondary Alcohols. Organometallics, 2011, 30, 6347-6350.	2.3	20
447	Mechanism of CO ₂ Fixation by Ir ^I –X Bonds (X = OH, OR, N, C). European Journal of Inorganic Chemistry, 2015, 2015, 4653-4657.	2.0	20
448	Transition Metal-Catalyzed Carboxylation of Organic Substrates with Carbon Dioxide. Topics in Organometallic Chemistry, 2015, , 225-278.	0.7	20
449	The Gold(I) atalysed Protodecarboxylation Mechanism. Chemistry - A European Journal, 2015, 21, 3399-3408.	3.3	20
450	Thermochemical study of the Lewis acid promoted carbonyl insertion reaction. Journal of the American Chemical Society, 1986, 108, 7852-7853.	13.7	19

#	Article	IF	CITATIONS
451	Synthesis of (.eta.5-C5Me5)Ru(.eta.6-tryptamine)(CF3SO3) Complexes. Chemospecific .eta.6 Coordination of the (.eta.5-C5Me5)Ru+ Moiety. Organometallics, 1994, 13, 676-681.	2.3	19
452	Organoruthenium Thermochemistry. Absolute Metal-Ligand Bond Disruption Enthalpies in the (.eta.5-C5Me5)(CO)2Ru-X System (X = H, Cl, Br, I) and Thermodynamic Influences of Ancillary Ligand Variation on the Ru-X Bond Disruption Enthalpy. Organometallics, 1995, 14, 1333-1338.	2.3	19
453	Thermochemistry of Oxygen Atom Transfer from Cp*ReO3. Organometallics, 1996, 15, 5250-5251.	2.3	19
454	Iridium(i) hydroxides in catalysis: rearrangement of allylic alcohols to ketones. Organic and Biomolecular Chemistry, 2014, 12, 6672-6676.	2.8	19
455	Expedient Syntheses of Neutral and Cationic Au(I)–NHC Complexes. Organometallics, 2017, 36, 3645-3653.	2.3	19
456	Organo-f-Element Thermochemistry. Implications for Reactivity and Bonding from Metal-Ligand Bonding Energetics. , 1992, , 35-51.		19
457	Gold Nâ€Heterocyclic Carbene Catalysts for the Hydrofluorination of Alkynes Using Hydrofluoric Acid: Reaction Scope, Mechanistic Studies and the Tracking of Elusive Intermediates. Chemistry - A European Journal, 2022, 28, .	3.3	19
458	Heats of reaction of RMo(CO)3C5H5 (R = H, Me, Et) with phosphines and phosphites: thermodynamic study of the carbonyl-insertion reaction. Inorganic Chemistry, 1986, 25, 1160-1165.	4.0	18
459	Alkyne-Azide Click Chemistry Mediated Carbanucleosides Synthesis. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1391-1394.	1.1	18
460	Synthesis and characterisation of Au(I)-(ITent) complexes. Journal of Organometallic Chemistry, 2015, 775, 152-154.	1.8	18
461	Transition metal bifluorides. Coordination Chemistry Reviews, 2016, 307, 65-80.	18.8	18
462	Energy transfer (EnT) photocatalysis enabled by gold-N-heterocyclic carbene (NHC) complexes. Chemical Science, 2022, 13, 6852-6857.	7.4	18
463	Diphosphines Possessing Electronically Different Donor Groups:Â Synthesis and Coordination Chemistry of the Unsymmetrical Di(N-pyrrolyl)phosphino-Functionalized dppm Analogue Ph2PCH2P(NC4H4)2. Inorganic Chemistry, 2003, 42, 7227-7238.	4.0	17
464	Tandem deuteration/hydrosilylation reactions catalyzed by a rhodium carbene complex under solvent-free conditions. Chemical Communications, 2012, 48, 2794.	4.1	17
465	The Preparation of Trisubstituted Alkenyl Nucleoside Phosphonates under Ultrasound-Assisted Olefin Cross-Metathesis. Organic Letters, 2013, 15, 4390-4393.	4.6	17
466	[Au]/[Pd] Multicatalytic Processes: Direct Oneâ€Pot Access to Benzo[<i>c</i>]chromenes and Benzo[<i>b</i>]furans. Chemistry - A European Journal, 2014, 20, 13507-13510.	3.3	17
467	Synthesis and Characterization of Gold(I) Complexes of Dibenzotropylidene-Functionalized NHC Ligands (Trop-NHCs). Organometallics, 2015, 34, 263-274.	2.3	17
468	Fluoride, bifluoride and trifluoromethyl complexes of iridium(i) and rhodium(i). Chemical Communications, 2015, 51, 62-65.	4.1	17

#	Article	IF	CITATIONS
469	Scope and limitations of the dual-gold-catalysed hydrophenoxylation of alkynes. Beilstein Journal of Organic Chemistry, 2016, 12, 172-178.	2.2	17
470	Effect of Ancillary Ligation on the Relative Bond Disruption Enthalpies of Ruâ^'H and Ruâ^'Cl Bonds in Cp(PR3)2RuX (PR3= PMe3, PMe2Ph, PMePh2, PPh3; X = H, Cl). Organometallics, 2000, 19, 4828-4833.	2.3	16
471	Straightforward Synthesis of Labeled and Unlabeled Pyrimidine d4Ns via 2′,3′-Diyne seco Analogues through Olefin Metathesis Reactions. European Journal of Organic Chemistry, 2003, 2003, 666-671.	2.4	16
472	Study of Different Copper (I) Catalysts for the "Click Chemistry―Approach to Carbanucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 779-783.	1.1	16
473	The Shortest Strategy for Generating Phosphonate Prodrugs by Olefin Crossâ€Metathesis – Application to Acyclonucleoside Phosphonates. European Journal of Organic Chemistry, 2011, 2011, 7324-7330.	2.4	16
474	Trapping atmospheric CO ₂ with gold. Chemical Communications, 2014, 50, 11321-11324.	4.1	16
475	The Mechanism of CO ₂ Insertion into Iridium(I) Hydroxide and Alkoxide Bonds: A Kinetics and Computational Study. Chemistry - A European Journal, 2015, 21, 6930-6935.	3.3	16
476	In vitro Antiâ€atherogenic Properties of Nâ€Heterocyclic Carbene Aurate(I) Compounds. ChemMedChem, 2018, 13, 2484-2487.	3.2	16
477	Improving process efficiency of gold-catalyzed hydration of alkynes: merging catalysis with membrane separation. Green Chemistry, 2020, 22, 2598-2604.	9.0	16
478	Synthesis and Ligand Binding of η6-(2β-Carbomethoxy-3β-phenyltropane) Transition Metal Complexes. Journal of Medicinal Chemistry, 1996, 39, 1560-1563.	6.4	15
479	Studies of the Synthesis and Thermochemistry of Coordinatively Unsaturated Chelate Complexes (η5-C5Me5)IrL2 (L2 = TsNCH2CH2NTs, TsNCH2CO2, CO2CO2). Inorganic Chemistry, 2000, 39, 2493-2499.	4.0	15
480	The influence of N-heterocyclic carbene steric and electronic properties in Ru-catalysed cross metathesis reactions. Journal of Organometallic Chemistry, 2011, 696, 3935-3938.	1.8	15
481	Influence of bulky yet flexible N-heterocyclic carbene ligands in gold catalysis. Beilstein Journal of Organic Chemistry, 2015, 11, 1809-1814.	2.2	15
482	A microfluidic approach for flexible and efficient operation of a cross-coupling reactive flow. RSC Advances, 2015, 5, 63786-63792.	3.6	15
483	In Silico Olefin Metathesis with Ruâ€Based Catalysts Containing Nâ€Heterocyclic Carbenes Bearing C ₆₀ Fullerenes. Chemistry - A European Journal, 2016, 22, 6617-6623.	3.3	15
484	The heat of reaction of Etî—,Mo(CO)3C5H5 and Hî—,Mo(CO)3C5H5 and related reactions. Thermochemical study of reductive elimination in alkyl molybdenum complexes. Polyhedron, 1988, 7, 1491-1498.	2.2	14
485	Relative Binding Energies of Tertiary Phosphine Ligands to the Cp*RuOCH2CF3(Cp* = η5-C5Me5) Moiety. Organometallics, 1996, 15, 3456-3462.	2.3	14
486	Enthalpies of Reaction of [(p-cymene)OsCl2]2with Monodentate Tertiary Phosphine Ligands. Importance of Steric and Electronic Ligand Factors in an Osmium(II) System. Organometallics, 1998, 17, 4004-4008.	2.3	14

#	Article	IF	CITATIONS
487	Auâ‹â‹â‹Hâ^'C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angewandte Chemie, 2021, 133, 21182-21192.	2.0	14
488	Heats of reaction of HMo(CO)3C5H5 with CCl4 and CBr4 and of NaMo(CO)3C5H5 with I2 and CH3. Solution thermochemical study of the Moî—,X bond for X = H, Cl, Br, I and CH3. Journal of Organometallic Chemistry, 1986, 315, 187-199.	1.8	13
489	Synthesis and characterization of an organoyttrium dimer produced via an Arbuzov dealkylation reaction. Organometallics, 1992, 11, 3459-3462.	2.3	13
490	Ligand (L) Influence on CO Binding Enthalpies to Ru(CO)2L2. Organometallics, 1997, 16, 4223-4225.	2.3	13
491	N-Heterocyclic Carbene-Ruthenium Complexes in Olefin Metathesis. , 2006, , 1-25.		13
492	PMOâ€Immobilized Au ^I –NHC Complexes: Heterogeneous Catalysts for Sustainable Processes. ChemPhysChem, 2018, 19, 430-436.	2.1	13
493	Synthesis of Di‣ubstituted Alkynes <i>via</i> Palladium atalyzed Decarboxylative Coupling and Câ€H Activation. ChemistrySelect, 2019, 4, 5-9.	1.5	13
494	Straightforward synthetic route to gold(<scp>i</scp>)-thiolato glycoconjugate complexes bearing NHC ligands (NHC = N-heterocyclic carbene) and their promising anticancer activity. New Journal of Chemistry, 2021, 45, 9995-10001.	2.8	13
495	Indenyl and Allyl Palladate Complexes Bearing <i>N</i> â€Heterocyclic Carbene Ligands: an Easily Accessible Class of New Anticancer Drug Candidates. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	13
496	[(NHC)Au ^I]-Catalyzed Rearrangement of Allylic Acetates. Organic Letters, 2008, 10, 1037-1037.	4.6	12
497	Platinum(II) mediated Csp3-H activation of tetramethylthiourea. Dalton Transactions, 2009, , 8107.	3.3	12
498	Phosphate binding to the [Au(IPr)] moiety: inner vs. outer sphere coordination behaviour. Dalton Transactions, 2012, 41, 8235.	3.3	12
499	In vitro Biological Activities of Gold(I) and Gold(III) Bis(N-Heterocyclic Carbene) Complexes. ChemistrySelect, 2017, 2, 5316-5320.	1.5	12
500	Defluorinative [4 + 1] annulation of perfluoroalkyl <i>N</i> -mesylhydrazones with primary amines provides 5-fluoroalkyl 1,2,3-triazoles. Green Chemistry, 2021, 23, 7976-7981.	9.0	12
501	Synthesis and catalytic activity of palladium complexes bearing <i>N</i> -heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) ligands. Dalton Transactions, 2021, 50, 9491-9499.	3.3	12
502	A simple synthesis of [RuCl ₂ (NHC)(<i>p</i> -cymene)] complexes and their use in olefin oxidation catalysis. Dalton Transactions, 2021, 50, 3959-3965.	3.3	12
503	Direct solution calorimetric measurements of enthalpies of proton and electron transfer reactions for transition metal complexes. Thermochemical study of metal-hydride and metal-metal bond energies. Inorganica Chimica Acta, 1994, 227, 285-292.	2.4	11
504	A thermodynamic method based on isoequilibrium behavior to determine the values of stereoelectronic parameters of phosphines. Journal of the Chemical Society Perkin Transactions II, 1999, , 2631-2639.	0.9	11

#	Article	IF	CITATIONS
505	Cross-coupling Reactions Catalyzed by Palladium N-Heterocyclic Carbene Complexes. , 2006, , 55-72.		11
506	Efficient and Selective Hydrosilylation of Alkenes and Alkynes Catalyzed by Novel N-Heterocyclic Carbene Pt0 Complexes. , 2006, , 119-161.		11
507	Synthesis and Reactivity of New Bis(N-heterocyclic carbene) Iridium(I) Complexes. Inorganic Chemistry, 2013, 52, 12674-12681.	4.0	11
508	Mechanism of the Transmetalation of Organosilanes to Gold. ChemistryOpen, 2016, 5, 60-64.	1.9	11
509	Synthesis, characterization and catalytic activity of stable [(NHC)H][ZnXY2] (NHC =N-Heterocyclic) Tj ETQq1 1	0.784314 4.8	rgBT /Overloc
510	Mechanism of the Catalytic Carboxylation of Alkylboronates with CO ₂ Using Niâ^'NHC Complexes: A DFT Study. Chemistry - A European Journal, 2017, 23, 14954-14961.	3.3	11
511	Synthesis, Characterization and Catalytic Activity of NHC Gold(I) Polyoxometalate Complexes. Chemistry - A European Journal, 2018, 24, 12630-12637.	3.3	11
512	Mizoroki–Heck Crossâ€Coupling of Acrylate Derivatives with Aryl Halides Catalyzed by Palladate Pre atalysts. European Journal of Inorganic Chemistry, 2019, 2019, 4695-4699.	2.0	11
513	Chiral Au ^I ―and Au ^{III} â€Isothiourea Complexes: Synthesis, Characterization and Application. Chemistry - A European Journal, 2019, 25, 1064-1075.	3.3	11
514	Simple synthesis of [Ru(CO ₃)(NHC)(<i>p</i> -cymene)] complexes and their use in transfer hydrogenation catalysis. Dalton Transactions, 2021, 50, 13012-13019.	3.3	11
515	Continuous Flow Synthesis of [Au(NHC)(Aryl)] (NHC=Nâ€Heterocyclic Carbene) Complexes. Chemistry - A European Journal, 2021, 27, 13342-13345.	3.3	11
516	The effect of cocoa alkalization on the non-volatile and volatile mood-enhancing compounds. Food Chemistry, 2022, 381, 132082.	8.2	11
517	Synthesis, thermochemistry, and structural characterization of organoruthenium arene and triene complexes. Structural Chemistry, 1993, 4, 367-375.	2.0	10
518	Thermodynamic Studies of the Addition of N2, C2H4, and Alkynes to [Rh(PiPr3)2Cl]2. Organometallics, 1995, 14, 4010-4013.	2.3	10
519	Synthetic and thermochemical studies of reactions of the 16-electron ruthenium complex [(Ph2PNMeNMePPh2)2RuCl]BF4 with H2, CH3CN and CO. Journal of Organometallic Chemistry, 1998, 571, 205-213.	1.8	10
520	Transesterification/Acylation Reactions Catalyzed by Molecular Catalysts. Synthesis, 2004, 2004, 971-985.	2.3	10
521	Pd-NHC Complexes as Catalysts in Telomerization and Aryl Amination Reactions. , 2006, , 73-102.		10
522	Vibrational and electronic spectra and the electronic structure of an unsaturated Arduengo-type carbene. Mendeleev Communications, 2007, 17, 92-94.	1.6	10

#	Article	IF	CITATIONS
523	Synthesis and structure of large difluoromethylene containing alicycles by ring closing metathesis (RCM). Organic and Biomolecular Chemistry, 2013, 11, 8209.	2.8	10
524	A New Synthetic Route to p-Methoxy-2,6-disubstituted Anilines and their Conversion into N-Heterocyclic Carbene Precursors. Synlett, 2014, 25, 393-398.	1.8	10
525	Competitive Goldâ€Promoted Meyer–Schuster and oxyâ€Cope Rearrangements of 3â€Acyloxyâ€1,5â€enynes: Selective Catalysis for the Synthesis of (+)â€(<i>S</i>)″³â€lonone and (â^')â€(2 <i>S</i> ,6 <i>R</i>)â€ <i>c Chemistry - A European Journal, 2015, 21, 14068-14074.</i>	is ଃ/ፄ> â€ἷ ³ á	ì€ I @ne.
526	Chiral Carbophilic Gold Lewis Acid Complexes in Enantioselective Catalysis. Topics in Organometallic Chemistry, 2015, , 51-90.	0.7	10
527	Quantifying electronic similarities between NHC–gold(<scp>i</scp>) complexes and their isolobal imidazolium precursors. Physical Chemistry Chemical Physics, 2019, 21, 15615-15622.	2.8	10
528	Synthesis, in silico and in vitro Evaluation of Novel Oxazolopyrimidines as Promising Anticancer Agents. Helvetica Chimica Acta, 2020, 103, e2000169.	1.6	10
529	A simple synthetic entryway into (<i>N</i> â€heterocyclic carbene)goldâ€steroidyl complexes and their anticancer activity. Applied Organometallic Chemistry, 0, , .	3.5	10
530	A Green Synthesis of Carbeneâ€Metalâ€Amides (CMAs) and Carbolineâ€Derived CMAs with Potent <i>inâ€vitro</i> and <i>ex vivo</i> Anticancer Activity. ChemMedChem, 2022, , .	3.2	10
531	Solution Thermochemistry of Ligand Substitution Reactions Involving Organoruthenium Complexes. Comments on Inorganic Chemistry, 1995, 17, 131-162.	5.2	9
532	Study of Copper(I) Catalysts for the Synthesis of Carbanucleosides via Azide-Alkyne 1,3-Dipolar Cycloaddition. Synthesis, 2008, 2008, 141-148.	2.3	9
533	Metallate Complexes of the Late Transition Metals: Organometallic Chemistry and Catalysis. Advances in Organometallic Chemistry, 2018, , 283-327.	1.0	9
534	Synthesis, reactivity and catalytic activity of Au-PAd ₃ complexes. Dalton Transactions, 2020, 49, 13872-13879.	3.3	9
535	Impact of alkalization conditions on the phytochemical content of cocoa powder and the aroma of cocoa drinks. LWT - Food Science and Technology, 2021, 145, 111181.	5.2	9
536	A Simple Synthetic Route to Wellâ€Defined [Pd(NHC)Cl(1â€ ^t Buâ€indenyl)] Preâ€catalysts for Crossâ€Coupling Reactions. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	9
537	Heats of reaction of HMo(CO)3(C5R5) (R = H, CH3) with diphenyldisulfide and of formation of the clusters [PhSMo(CO)x(C5H5)]2, x = 1,2. Thermodynamic study of molybdenum-sulfur bond strengths. Inorganica Chimica Acta, 1995, 240, 175-182.	2.4	8
538	Recent Developments in the Use of N-Heterocyclic Carbenes: Applications in Catalysis. ACS Symposium Series, 2003, , 323-341.	0.5	8
539	Sonication-Assisted Synthesis of <i>(E)</i> -2-Methyl-but-2-enyl Nucleoside Phosphonate Prodrugs. ChemistrySelect, 2016, 1, 3108-3113.	1.5	8
540	The activity of indenylidene derivatives in olefin metathesis catalysts. Beilstein Journal of Organic Chemistry, 2018, 14, 2956-2963.	2.2	8

#	Article	IF	CITATIONS
541	A simple synthetic entryway into new families of NHC–gold-amido complexes and their <i>in vitro</i> antitumor activity. Dalton Transactions, 2022, 51, 3462-3471.	3.3	8
542	A green route to platinum N-heterocyclic carbene complexes: mechanism and expanded scope. Dalton Transactions, 2022, 51, 6204-6211.	3.3	8
543	Versatile and Highly Efficient <i>trans</i> â€{Pd(NHC)Cl ₂ (DMS/THT)] Precatalysts for Câ^'N and Câ^'C Coupling Reactions in Green Solvents. European Journal of Organic Chemistry, 2022, 2022, .	2.4	8
544	Synthetic and solution calorimetric investigations of chelating phosphine ligands in Ru(allyl)2(PP) complexes (PP = diphosphine). Canadian Journal of Chemistry, 2001, 79, 626-631.	1.1	7
545	Ni-NHC Mediated Catalysis. , 2006, , 163-182.		7
546	Mechanism of dihydride formation and hydrogen/deuterium exchange in a cationic iridium(III) complex. Canadian Journal of Chemistry, 2009, 87, 1362-1368.	1.1	7
547	Synthesis of an Intermediate of Nafoxidine via Nickel-Catalyzed Ketone Arylation. Synthesis, 2015, 47, 2032-2037.	2.3	7
548	Platinumâ€Catalyzed Alkene Hydrosilylation: Solventâ€Free Process Development from Batch to a Membraneâ€Integrated Continuous Process. ChemSusChem, 2021, 14, 3810-3814.	6.8	7
549	Continuous Flow Synthesis of NHCâ€Coinage Metal Amido and Thiolato Complexes: A Mechanismâ€based Process Development. Chemistry Methods, 2022, 2, .	3.8	7
550	Flow chemistry of main group and transition metal complexes. Trends in Chemistry, 2022, 4, 584-607.	8.5	7
551	Synthesis of Carbeneâ€Metalâ€Amido (CMA) Complexes and Their Use as Precatalysts for the Activatorâ€Free, Gold atalyzed Addition of Carboxylic Acids to Alkynes. Chemistry - A European Journal, 2022, 28, .	3.3	7
552	Synthesis, Characterization, and Catalytic Behavior of a Ruthenium(II) Tetraazaannulene Complex. Inorganic Chemistry, 1996, 35, 252-254.	4.0	6
553	Solution thermochemical study of ligand substitution reactions of hybrid alkyl/fluoroalkoxy phosphorus ligands in the L2Fe(CO)3 system. Inorganica Chimica Acta, 1999, 291, 32-38.	2.4	6
554	Synthesis and thermochemical study of ligand substitution reactions of aminobis(phosphines), Ph2P(R)NPPh2, with [Me2Pt(COD)]. Inorganica Chimica Acta, 2005, 358, 2817-2820.	2.4	6
555	Ruthenium N-Heterocyclic Carbene Complexes in Organic Transformations (Excluding Metathesis). , 2006, , 27-53.		6
556	Large-Scale One-Pot Synthesis of N-Heterocyclic Carbene-Pd(allyl)Cl Complexes. Synthesis, 2006, 2006, 366-367.	2.3	6
557	Voltage-Based Current-Compensation Converter Control for Power Electronic Interfaced Distribution Networks in Future Aircraft. IEEE Transactions on Transportation Electrification, 2020, 6, 1819-1829.	7.8	6
558	Conversion of Pd(<scp>i</scp>) off-cycle species into highly efficient cross-coupling catalysts. Dalton Transactions, 2021, 50, 5420-5427.	3.3	6

#	Article	IF	CITATIONS
559	Continuous Flow Synthesis of Sulfur―and Seleniumâ^'NHC Compounds (NHC= <i>N</i> â€Heterocyclic) Tj ETQq1	1 0.7843 2.4	14 rgBT /0
560	Metal-mediated and -catalyzed Oxidations Using N-Heterocyclic Carbene Ligands. , 2006, , 103-118.		5
561	Cu-, Ag-, and Au-NHC Complexes in Catalysis. , 2006, , 257-274.		5
562	Steric Maps to Evaluate the Role of Steric Hindrance on the IPr NHC Ligand. Procedia Computer Science, 2013, 18, 845-854.	2.0	5
563	Protocol for Palladium/N-Heterocyclic Carbene-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides by N–C(O) Activation. Synthesis, 2021, 53, 682-687.	2.3	5
564	Synthesis of Gold(I)â^'Trifluoromethyl Complexes and their Role in Generating Spectroscopic Evidence for a Gold(I)â^'Difluorocarbene Species. Chemistry - A European Journal, 2021, 27, 8461-8467.	3.3	5
565	Chelation enforcing a dual gold configuration in the catalytic hydroxyphenoxylation of alkynes. Applied Organometallic Chemistry, 2021, 35, e6362.	3.5	5
566	A Simple Synthetic Route to [Rh(acac)(CO)(NHC)] Complexes: Ligand Property Diagnostic Tools and Precatalysts. European Journal of Inorganic Chemistry, 2021, 2021, 3506-3511.	2.0	5
567	CHAPTER 4. Advances in C–C and C–X Coupling Using Palladium– <i>N</i> -Heterocyclic Carbene (Pd–NHC) Complexes. RSC Catalysis Series, 0, , 139-227.	0.1	5
568	Reactions of N-heterocyclic Carbene-Based Chalcogenoureas with Halogens: A Diverse Range of Outcomes. Dalton Transactions, 2022, , .	3.3	5
569	Azolium Aurates as Pre-Catalysts for the Oxidative Coupling of Terminal Alkynes under Mild Conditions. Journal of Organic Chemistry, 2022, 87, 4883-4893.	3.2	5
570	N-Heterocyclic Carbenes. European Journal of Inorganic Chemistry, 2009, 2009, 1664-1664.	2.0	4
571	A new initiating system based on [(SiMes)Ru(PPh3)(Ind)Cl2] combined with azo-bis-isobutyronitrile in the polymerization and copolymerization of styrene and methyl methacrylate. Designed Monomers and Polymers, 2017, 20, 167-176.	1.6	4
572	Regression analysis of properties of [Au(IPr)(CHR ₂)] complexes. Dalton Transactions, 2019, 48, 7693-7703.	3.3	4
573	Straightforward synthesis of [Cu(NHC)(alkynyl)] and [Cu(NHC)(thiolato)] complexes (NHC =) Tj ETQq1 1 0.78431	4ggBT ∕O	verlock 10
574	Use of (NHC)Pd(η3-allyl)Cl (NHC =N-Heterocyclic Carbene) in a Palladium-mediated Approach toCryptocaryaAlkaloids. Synlett, 2003, 2003, 1871-1873.	1.8	3
575	Asymmetric Catalysis with Metal N-Heterocyclic Carbene Complexes. , 2006, , 183-222.		3
576	Chelate and Pincer Carbene Complexes. , 2006, , 223-239.		3

STEVEN P. NOLAN

#	Article	IF	CITATIONS
577	The Quest for Longevity and Stability of Iridium-based Hydrogenation Catalysts: N-Heterocyclic Carbenes and Crabtree′s Catalyst. , 2006, , 241-255.		3
578	Cross-Metathesis Mediated Synthesis of New Acyclic Nucleoside Phosphonates. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1399-1402.	1.1	3
579	Optimized network planning of mini-grids for the rural electrification of developing countries. , 2017, , .		3
580	Investigating the Biological Activity of Imidazolium Aurate Salts. ChemistrySelect, 2019, 4, 11061-11065.	1.5	3
581	Integrating membrane separation with goldâ€catalyzed carboxylative cyclization of propargylamine and catalyst recovery via organic solvent nanofiltration. Journal of Chemical Technology and Biotechnology, 2021, 96, 3371-3377.	3.2	3
582	Synthesis and Activity in Ring-Closing Metathesis of Phosphine and NHC-Containing Ruthenium–Indenylidene (Bis)Pyridine Complexes. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 29-37.	0.1	3
583	Synthetic and thermochemical studies of fluorinated tertiary phosphine ligands R2PRf [R=Cy, Ph, iPr; Rf=CH2CH2(CF2)5CF3] in an organoiron system. Inorganica Chimica Acta, 2000, 300-302, 987-991.	2.4	2
584	An Industrially Viable Catalyst System for Palladium-Catalyzed Telomerizations of 1,3-Butadiene with Alcohols. Chemistry - A European Journal, 2004, 10, 4661-4661.	3.3	2
585	Ligand-Directed Reactivity in Dioxygen and Water Binding to cis-[Pd(NHC)2(η2-O2)]. Journal of the American Chemical Society, 2018, 140, 264-276.	13.7	2
586	Synthesis of γ,δ-Unsaturated Esters and Amides via Au(I)-Catalyzed Reactions of Aryl Ynol Ethers or Ynamides with Allylic Alcohols. Synthesis, 2021, 53, 4644-4653.	2.3	2
587	Frontispiece: Mechanistic Aspects of the Palladiumâ€Catalyzed Suzukiâ€Miyaura Crossâ€Coupling Reaction. Chemistry - A European Journal, 2021, 27, .	3.3	2
588	å«çª'ç´ãf~ãf†ãfç'°ã,«ãf«ãf™ãf³(NHC)-PdéŒ⁻体:工æ¥çš"ã«å¿œç""å•èf½ãªã,⁻ãfã,¹ã,«ãffãf—ãfªãf³ã,°è	§¦å ð'.1 Yuki	Gasei Kagakı
589	Reaction Parameterization as a Tool for Development in Organometallic Catalysis. , 2021, , .		2
590	Regioselective synthesis of η3-(N-methoxycarbonyl-7-azabicyclo[2.2.1]he ta-2,5-dienyl)-η5-(C5Me5)RuCl complexes. Journal of Organometallic Chemistry, 1997, 533, 25-30.	1.8	1
591	Synthesis of Biaryl, Arylamine and Aryl Ketone Compounds Using a Commercially Available Air- and Moisture-Stable Palladium Catalyst. Synthesis, 2003, 2003, 2590-2592.	2.3	1
592	Suzuki Coupling Reactions. , 2005, , 59-90.		1
593	Microwave-Assisted Silylation-Amination of Uracil Acyclonucleosides to 4-Alkylamino-2(1H)-Pyrimidinone Analogues. Synthesis, 2008, 2008, 2127-2133.	2.3	1
594	Letter to the Editor concerning: "Carbon–Heteroatom Coupling Using Pd–PEPPSI Complexes―by Valente et al Organic Process Research and Development, 2014, 18, 456-457.	2.7	1

#	Article	IF	CITATIONS
595	N-heterocyclic carbene complexes of palladium in oxygen atom transfer reactions involving the making and breaking of N-O bonds. Inorganica Chimica Acta, 2017, 468, 285-293.	2.4	1
596	polymerization of methyl methacrylate and other vinylic monomers. Arabian Journal of Chemistry, 2018, 11, 1017-1031.	4.9	1
597	The mechanism of carboxylative cyclization of propargylamine by N-heterocyclic carbene complexes of Au(I). Journal of Organometallic Chemistry, 2021, 934, 121583.	1.8	1
598	In vitro and in cellulo anti-diabetic activity of Aul- and AuIII-isothiourea complexes. Inorganic Chemistry Communication, 2021, 130, 108666.	3.9	1
599	Building Indenylidene–Ruthenium Catalysts for Metathesis Transformations. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 39-47.	0.5	1
600	Unveiling the complexity of the dual gold(I) catalyzed intermolecular hydroamination of alkynes leading to vinylazoles. Molecular Catalysis, 2022, 518, 112090.	2.0	1
601	Theoretical study on the mechanism, chemo- and enantioselectivity of the Ag- <i>vs.</i> Rh-catalyzed intramolecular carbene transfer reaction of diazoacetamides. RSC Advances, 2022, 12, 18197-18208.	3.6	1
602	Investigations into the roller electrical motor. Journal Physics D: Applied Physics, 1999, 32, 741-748.	2.8	0
603	N-Heterocyclic Carbenes as Versatile Nucleophilic Catalysts for Transesterification/Acylation Reactions ChemInform, 2003, 34, no.	0.0	Ο
604	Well-Defined, Air-Stable (NHC)Pd(Allyl)Cl (NHC: N-Heterocyclic Carbene) Catalysts for the Arylation of Ketones ChemInform, 2003, 34, no.	0.0	0
605	Efficient Transesterification/Acylation Reactions Mediated by N-Heterocyclic Carbene Catalysts ChemInform, 2003, 34, no.	0.0	Ο
606	Synthesis, Characterization, and Catalytic Activity of N-Heterocyclic Carbene (NHC) Palladacycle Complexes ChemInform, 2003, 34, no.	0.0	0
607	Synthesis of Unprotected and Borane-Protected Cyclic Phosphines Using Ru- and Mo-Based Olefin Metathesis Catalysts ChemInform, 2004, 35, no.	0.0	0
608	Catalytic Activity of Pd(II) and Pd(II)/DAB-R Systems for the Heck Arylation of Olefins ChemInform, 2004, 35, no.	0.0	0
609	A General Method for the Suzuki—Miyaura Cross-Coupling of Sterically Hindered Aryl Chlorides: Synthesis of Di- and Tri-ortho-substituted Biaryls in 2-Propanol at Room Temperature ChemInform, 2004, 35, no.	0.0	0
610	Transesterification/Acylation of Secondary Alcohols Mediated by N-Heterocyclic Carbene Catalysts ChemInform, 2004, 35, no.	0.0	0
611	Recent Developments in the Use of N-Heterocyclic Carbenes: Applications in Catalysis. ChemInform, 2004, 35, no.	0.0	0
612	(NHC)Cul (NHC: N-Heterocyclic Carbene) Complexes as Efficient Catalysts for the Reduction of Carbonyl Compounds ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
613	Structure and Reactivity of "Unusual―N-Heterocyclic Carbene (NHC) Palladium Complexes Synthesized from Imidazolium Salts ChemInform, 2004, 35, no.	0.0	0
614	Cross-Coupling and Dehalogenation Reactions Catalyzed by (N-Heterocyclic carbene)Pd(allyl)Cl Complexes ChemInform, 2004, 35, no.	0.0	0
615	Reactivity of a N-Heterocyclic Carbene, 1,3-Di-(1-adamantyl) Imidazol-2-ylidene, with a Pseudo-Acid: Structural Characterization of Claisen Condensation Adduct ChemInform, 2005, 36, no.	0.0	0
616	Carbenes: Reactivity and Catalysis. ChemInform, 2005, 36, no.	0.0	0
617	Efficient Synthesis of Various Acycloalkenyl Derivatives of Pyrimidine Using Cross-Metathesis and Pd(0) Methodologies ChemInform, 2005, 36, no.	0.0	0
618	Stabilization of Organometallic Species Achieved by the Use of N-Heterocyclic Carbene (NHC) Ligands. ChemInform, 2005, 36, no.	0.0	0
619	Simple (Imidazol-2-ylidene)-Pd-acetate Complexes as Effective Precatalysts for Sterically Hindered Suzuki—Miyaura Couplings ChemInform, 2005, 36, no.	0.0	0
620	Metathesis Strategy in Nucleoside Chemistry. ChemInform, 2005, 36, no.	0.0	0
621	A Simple and Efficient Copper-Catalyzed Procedure for the Hydrosilylation of Hindered and Functionalized Ketones ChemInform, 2005, 36, no.	0.0	0
622	A Simple and Efficient Copper-Catalyzed Procedure for the Hydrosilylation of Hindered and Functionalized Ketones ChemInform, 2005, 36, no.	0.0	0
623	Synthesis of Novel (NHC)Pd(acac)Cl Complexes (acac: Acetylacetonate) and Their Activity in Cross-Coupling Reactions ChemInform, 2006, 37, no.	0.0	0
624	Wiley End User License Agreement. , 2014, , a-a.		0
625	Enthalpies of ligand substitution for [Mo(η5C5H5)(CO)2(NO)] – The role of π-bonding effects in metal–ligand bond strengths. Journal of Chemical Thermodynamics, 2014, 73, 156-162.	2.0	0
626	N-Heterocyclic carbenes. Beilstein Journal of Organic Chemistry, 2015, 11, 2474-2475.	2.2	0
627	1. Grignard Reagents and Palladium. , 2016, , 1-60.		0
628	Grignard Reagents and Palladium. ChemistrySelect, 2018, 3, .	1.5	0
629	Well-Defined (NHC)Pd (II) Complexes and Their Use in C–C and C–N Bond-Forming Reactions. , 2007, , 231-247.		0