
Enrico Proietti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1927611/publications.pdf Version: 2024-02-01

ENDICO PROJETTI

#	Article	IF	CITATIONS
1	Type I interferons induce peripheral T regulatory cell differentiation under tolerogenic conditions. International Immunology, 2021, 33, 59-77.	4.0	6
2	Nicotinamide inhibits melanoma in vitro and in vivo. Journal of Experimental and Clinical Cancer Research, 2020, 39, 211.	8.6	30
3	Towards a Systems Immunology Approach to Unravel Responses to Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 582744.	4.8	9
4	Clinical and Immunological Outcomes in High-Risk Resected Melanoma Patients Receiving Peptide-Based Vaccination and Interferon Alpha, With or Without Dacarbazine Preconditioning: A Phase II Study. Frontiers in Oncology, 2020, 10, 202.	2.8	6
5	Tumor-Intrinsic or Drug-Induced Immunogenicity Dictates the Therapeutic Success of the PD1/PDL Axis Blockade. Cells, 2020, 9, 940.	4.1	8
6	Disruption of IFN-I Signaling Promotes HER2/Neu Tumor Progression and Breast Cancer Stem Cells. Cancer Immunology Research, 2018, 6, 658-670.	3.4	34
7	Role of interferon regulatory factor 1 in governing <scp>T</scp> reg depletion, <scp>T</scp> h1 polarization, inflammasome activation and antitumor efficacy of cyclophosphamide. International Journal of Cancer, 2018, 142, 976-987.	5.1	32
8	Antigen-specificity and DTIC before peptide-vaccination differently shape immune-checkpoint expression pattern, anti-tumor functionality and TCR repertoire in melanoma patients. Oncolmmunology, 2018, 7, e1465163.	4.6	6
9	The added value of type I interferons to cytotoxic treatments of cancer. Cytokine and Growth Factor Reviews, 2017, 36, 89-97.	7.2	25
10	Goals and objectives of the Italian Network for Tumor Biotherapy (NIBIT). Cytokine and Growth Factor Reviews, 2017, 36, 1-3.	7.2	1
11	Chemo-immunotherapy induces tumor regression in a mouse model of spontaneous mammary carcinogenesis. Oncotarget, 2016, 7, 59754-59765.	1.8	4
12	Twenty-five years of type I interferon-based treatment: A critical analysis of its therapeutic use. Cytokine and Growth Factor Reviews, 2015, 26, 121-131.	7.2	43
13	Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activates anti-tumor immunity: results from a phase I trial in advanced melanoma. Journal of Translational Medicine, 2015, 13, 139.	4.4	36
14	Consensus guidelines for the detection of immunogenic cell death. OncoImmunology, 2014, 3, e955691.	4.6	686
15	Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20, 1301-1309.	30.7	823
16	Exploiting dendritic cells in the development of cancer vaccines. Expert Review of Vaccines, 2013, 12, 1195-1210.	4.4	15
17	Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays. BioMed Research International, 2013, 2013, 1-11.	1.9	33
18	The Janus face of cyclophosphamide. Oncolmmunology, 2013, 2, e25789.	4.6	23

ENRICO PROIETTI

#	Article	IF	CITATIONS
19	Cyclophosphamide Induces a Type I Interferon–Associated Sterile Inflammatory Response Signature in Cancer Patients' Blood Cells: Implications for Cancer Chemoimmunotherapy. Clinical Cancer Research, 2013, 19, 4249-4261.	7.0	73
20	Exploitation of the propulsive force of chemotherapy for improving the response to cancer immunotherapy. Molecular Oncology, 2012, 6, 1-14.	4.6	48
21	Cyclophosphamide Synergizes with Type I Interferons through Systemic Dendritic Cell Reactivation and Induction of Immunogenic Tumor Apoptosis. Cancer Research, 2011, 71, 768-778.	0.9	304
22	Unraveling Cancer Chemoimmunotherapy Mechanisms by Gene and Protein Expression Profiling of Responses to Cyclophosphamide. Cancer Research, 2011, 71, 3528-3539.	0.9	72
23	Defining the critical hurdles in cancer immunotherapy. Journal of Translational Medicine, 2011, 9, 214.	4.4	139
24	Strong CD8+ T cell antigenicity and immunogenicity of large foreign proteins incorporated in HIV-1 VLPs able to induce a Nef-dependent activation/maturation of dendritic cells. Vaccine, 2011, 29, 3465-3475.	3.8	17
25	MHV-68 producing mIFNα1 is severely attenuated in vivo and effectively protects mice against challenge with wt MHV-68. Vaccine, 2011, 29, 3935-3944.	3.8	5
26	Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Seminars in Immunopathology, 2011, 33, 369-383.	6.1	265
27	IFN-α as a vaccine adjuvant: recent insights into the mechanisms and perspectives for its clinical use. Expert Review of Vaccines, 2011, 10, 487-498.	4.4	29
28	Combination strategies for enhancing the efficacy of immunotherapy in cancer patients. Annals of the New York Academy of Sciences, 2010, 1194, 169-178.	3.8	64
29	Dacarbazine Treatment before Peptide Vaccination Enlarges T-Cell Repertoire Diversity of Melan-A–Specific, Tumor-Reactive CTL in Melanoma Patients. Cancer Research, 2010, 70, 7084-7092.	0.9	57
30	APC Activation by IFN- $\hat{1}$ ± Decreases Regulatory T Cell and Enhances Th Cell Functions. Journal of Immunology, 2010, 184, 5969-5979.	0.8	72
31	Chemotherapy enhances vaccineâ€induced antitumor immunity in melanoma patients. International Journal of Cancer, 2009, 124, 130-139.	5.1	103
32	Type I interferons as vaccine adjuvants against infectious diseases and cancer. Expert Review of Vaccines, 2008, 7, 373-381.	4.4	47
33	Pyrimethamine Induces Apoptosis of Melanoma Cells via a Caspase and Cathepsin Double-Edged Mechanism. Cancer Research, 2008, 68, 5291-5300.	0.9	37
34	Efficient Stimulation of T Cell Responses by Human IFN-α–induced Dendritic Cells Does Not Require Toll-like Receptor Triggering. Journal of Immunotherapy, 2008, 31, 466-474.	2.4	10
35	Cyclophosphamide Enhances the Antitumor Efficacy of Adoptively Transferred Immune Cells through the Induction of Cytokine Expression, B-Cell and T-Cell Homeostatic Proliferation, and Specific Tumor Infiltration. Clinical Cancer Research, 2007, 13, 644-653.	7.0	228
36	IFN-Â and Novel Strategies of Combination Therapy for Cancer. Annals of the New York Academy of Sciences, 2007, 1112, 256-268.	3.8	22

ENRICO PROIETTI

#	Article	IF	CITATIONS
37	Type I IFN as a vaccine adjuvant for both systemic and mucosal vaccination against influenza virus. Vaccine, 2006, 24, S56-S57.	3.8	33
38	Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine, 2005, 23, 2994-3004.	3.8	88
39	Type I IFN Protects Permissive Macrophages from <i>Legionella pneumophila</i> Infection through an IFN-γ-Independent Pathway. Journal of Immunology, 2004, 173, 1266-1275.	0.8	77
40	Identification of Tissue-Restricted Transcripts in Human Islets. Endocrinology, 2004, 145, 4513-4521.	2.8	87
41	Administration of different antigenic forms of altered peptide ligands derived from HIV-1 RTase influences their effects on T helper cell activation. Human Immunology, 2003, 64, 1-8.	2.4	2
42	Shifting Gene Expression Profiles During Ex Vivo Culture of Renal Tumor Cells: Implications for Cancer Immunotherapy. Oncology Research, 2003, 14, 133-145.	1.5	7
43	Gene expression profiling and functional activity of human dendritic cells induced with IFN-alpha-2b: implications for cancer immunotherapy. Clinical Cancer Research, 2003, 9, 2022-31.	7.0	27
44	Type I IFN as a Natural Adjuvant for a Protective Immune Response: Lessons from the Influenza Vaccine Model. Journal of Immunology, 2002, 169, 375-383.	0.8	208
45	Interferon-alpha in tumor immunity and immunotherapy. Cytokine and Growth Factor Reviews, 2002, 13, 119-134.	7.2	306
46	Vaginal transmission of HIV-1 in hu-SCID mice: a new model for the evaluation of vaginal microbicides. Aids, 2001, 15, 2231-2238.	2.2	41
47	Transcript profiling of human dendritic cells maturation-induced under defined culture conditions: comparison of the effects of tumour necrosis factor alpha, soluble CD40 ligand trimer and interferon gamma. British Journal of Haematology, 2001, 114, 444-457.	2.5	31
48	Cyclophosphamide induces type I interferon and augments the number of CD44hi T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood, 2000, 95, 2024-2030.	1.4	189
49	Modulation of TCR recognition of MHC class II/peptide by processed remote N- and C-terminal epitope extensions. Human Immunology, 2000, 61, 753-763.	2.4	16
50	Murine interferon-α1 gene-transduced ESb tumor cells are rejected by host-mediated mechanisms despite resistance of the parental tumor to interferon-α/β therapy. Cancer Gene Therapy, 1999, 6, 246-253.	4.6	9
51	Type I Interferon Is a Powerful Inhibitor of in Vivo HIV-1 Infection and Preserves Human CD4+ T Cells from Virus-Induced Depletion in SCID Mice Transplanted with Human Cells. Virology, 1999, 263, 78-88.	2.4	57
52	In vitro immunization with a recombinant antigen carrying the HIV-1 RT248–262 determinant inserted at different locations results in altered TCRVB region usage. Human Immunology, 1999, 60, 755-763.	2.4	3
53	TREATMENT OF SEVERE COMBINED IMMUNODEFICIENCY MICE WITH ANTI-MURINE GRANULOCYTE MONOCLONAL ANTIBODY IMPROVES HUMAN LEUKOCYTE XENOTRANSPLANTATION1. Transplantation, 1998, 65, 416-420.	1.0	17
54	Human Lymphoblastoid CD4 ⁺ T Cells Become Permissive to Macrophage-Tropic Strains of Human Immunodeficiency Virus Type 1 after Passage into Severe Combined Immunodeficient Mice through In Vivo Upregulation of CCR5: In Vivo Dynamics of CD4 ⁺ T-Cell Differentiation in Pathogenesis of AIDS. Journal of Virology, 1998, 72, 10323-10327.	3.4	12

ENRICO PROIETTI

#	Article	IF	CITATIONS
55	U937-SCID mouse xenografts: a new model for acute in vivo HIV-1 infection suitable to test antiviral strategies. Antiviral Research, 1997, 36, 81-90.	4.1	19
56	Cure of Mice with Established Metastatic Friend Leukemia Cell Tumors by a Combined Therapy with Tumor Cells Expressing Both Interferon- <i>α</i> 1 and Herpes Simplex Thymidine Kinase Followed by Ganciclovir. Human Gene Therapy, 1996, 7, 1-10.	2.7	43
57	Correlation between the sensitivity or resistance to IL-2 and the response to cyclophosphamide of 4 tumors transplantable in the same murine host. International Journal of Cancer, 1995, 62, 184-190.	5.1	2
58	Specific Interferon Genes Are Expressed in Individual Cells in the Peritoneum and Bone Marrow of Normal Mice. Journal of Interferon Research, 1992, 12, 27-34.	1.2	7
59	Activation of Glycerophosphocholine Phosphodiesterase in Friend Leukemia Cells Upon Inâ€Vitro Induced Erythroid Differentiation. ³¹ P and ¹ H NMR Studies. Israel Journal of Chemistry, 1992, 32, 291-298.	2.3	6
60	Alterations of lipid composition in Friend leukemia cell tumors in mice treated with tumor necrosis factor-α. FEBS Letters, 1990, 260, 220-224.	2.8	8
61	Studies on the expression of H-2 antigens in non-metastatic and highly metastatic Friend erythroleukemia cells: correlation with thein vivo behaviour of tumor cells. Clinical and Experimental Metastasis, 1989, 7, 609-625.	3.3	1
62	Anti-tumor effects of interleukin-2 and interleukin-1 in mice transplanted with different syngeneic tumors. International Journal of Cancer, 1989, 44, 1108-1116.	5.1	37
63	Wheat germ agglutinin-binding protein changes in highly malignant Friend leukemia cells metastasizing to the liver. Clinical and Experimental Metastasis, 1988, 6, 347-362.	3.3	9
64	Modulations of glycerophosphorylcholine and phosphorylcholine in Friend erythroleukemia cells upon in vitro-induced erythroid differentiation: a31P NMR study. FEBS Letters, 1984, 176, 88-92.	2.8	34
65	Antibody assay for measles virus: Comparisons of immuneadherence haemagglutination, single radial haemolysis, enzyme immunoassay and haemagglutination inhibition. Journal of Virological Methods, 1983 6 303-310	2.1	4