Aaron C Moberly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1927364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Enigma of Poor Performance by Adults With Cochlear Implants. Otology and Neurotology, 2016, 37, 1522-1528.	1.3	106
2	Three challenges for future research on cochlear implants. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2017, 3, 240-254.	1.6	98
3	Word learning in deaf children with cochlear implants: effects of early auditory experience. Developmental Science, 2012, 15, 448-461.	2.4	96
4	Does quality of life depend on speech recognition performance for adult cochlear implant users?. Laryngoscope, 2016, 126, 699-706.	2.0	86
5	Comparison of Longâ€ŧerm Qualityâ€ofâ€Life Outcomes in Vestibular Schwannoma Patients. Otolaryngology - Head and Neck Surgery, 2014, 150, 1024-1032.	1.9	61
6	Cochlear Implants in Adults. Otology and Neurotology, 2016, 37, 1238-1245.	1.3	57
7	Development of Phonological, Lexical, and Syntactic Abilities in Children With Cochlear Implants Across the Elementary Grades. Journal of Speech, Language, and Hearing Research, 2018, 61, 2561-2577.	1.6	55
8	Nonâ€auditory neurocognitive skills contribute to speech recognition in adults with cochlear implants. Laryngoscope Investigative Otolaryngology, 2016, 1, 154-162.	1.5	54
9	Speech Recognition in Adults With Cochlear Implants: The Effects of Working Memory, Phonological Sensitivity, and Aging. Journal of Speech, Language, and Hearing Research, 2017, 60, 1046-1061.	1.6	54
10	Developing a synchronous otolaryngology telemedicine Clinic: Prospective study to assess fidelity and diagnostic concordance. Laryngoscope, 2018, 128, 1068-1074.	2.0	52
11	Cognitive Functions in Adults Receiving Cochlear Implants: Predictors of Speech Recognition and Changes After Implantation. Otology and Neurotology, 2020, 41, e322-e329.	1.3	48
12	Postoperative Rehabilitation Strategies Used by Adults With Cochlear Implants: A Pilot Study. Laryngoscope Investigative Otolaryngology, 2016, 1, 42-48.	1.5	45
13	Real-Time Intracochlear Electrocochleography Obtained Directly Through a Cochlear Implant. Otology and Neurotology, 2017, 38, e107-e113.	1.3	44
14	Do Adults With Cochlear Implants Rely on Different Acoustic Cues for Phoneme Perception Than Adults With Normal Hearing?. Journal of Speech, Language, and Hearing Research, 2014, 57, 566-582.	1.6	42
15	Patient Tolerance of the Flexible CO2 Laser for Office-based Laryngeal Surgery. Journal of Voice, 2010, 24, 750-754.	1.5	38
16	Word Recognition Variability With Cochlear Implants. Ear and Hearing, 2016, 37, 14-26.	2.1	38
17	Digital otoscopy versus microscopy: How correct and confident are ear experts in their diagnoses?. Journal of Telemedicine and Telecare, 2018, 24, 453-459.	2.7	36
18	Verbal Learning and Memory After Cochlear Implantation in Postlingually Deaf Adults: Some New Findings with the CVLT-II. Ear and Hearing, 2018, 39, 720-745.	2.1	35

#	Article	IF	CITATIONS
19	Making Sense of Sentences: Top-Down Processing of Speech by Adult Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 2019, 62, 2895-2905.	1.6	35
20	Verbal working memory and inhibition oncentration in adults with cochlear implants. Laryngoscope Investigative Otolaryngology, 2017, 2, 254-261.	1.5	34
21	Relating quality of life to outcomes and predictors in adult cochlear implant users: Are we measuring the right things?. Laryngoscope, 2018, 128, 959-966.	2.0	34
22	Cost savings associated with an outpatient otolaryngology telemedicine clinic. Laryngoscope Investigative Otolaryngology, 2019, 4, 234-240.	1.5	33
23	High- and Low-Performing Adult Cochlear Implant Users on High-Variability Sentence Recognition: Differences in Auditory Spectral Resolution and Neurocognitive Functioning. Journal of the American Academy of Audiology, 2020, 31, 324-335.	0.7	32
24	Cognitive Functions in Adult Cochlear Implant Users, Cochlear Implant Candidates, and Normalâ€Hearing Listeners. Laryngoscope Investigative Otolaryngology, 2018, 3, 304-310.	1.5	29
25	OtoMatch: Content-based eardrum image retrieval using deep learning. PLoS ONE, 2020, 15, e0232776.	2.5	28
26	Verbal Working Memory in Older Adults: The Roles of Phonological Capacities and Processing Speed. Journal of Speech, Language, and Hearing Research, 2016, 59, 1520-1532.	1.6	24
27	Components of the eIF4F complex are potential therapeutic targets for malignant peripheral nerve sheath tumors and vestibular schwannomas. Neuro-Oncology, 2016, 18, 1265-1277.	1.2	24
28	Neurocognitive Factors Contributing to Cochlear Implant Candidacy. Otology and Neurotology, 2018, 39, e1010-e1018.	1.3	24
29	Nonverbal Reasoning as a Contributor to Sentence Recognition Outcomes in Adults With Cochlear Implants. Otology and Neurotology, 2018, 39, e956-e963.	1.3	23
30	Diagnostic accuracy and confidence for otoscopy: Are medical students receiving sufficient training?. Laryngoscope, 2019, 129, 1891-1897.	2.0	23
31	Visual working memory span in adults with cochlear implants: Some preliminary findings. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2017, 3, 224-230.	1.6	22
32	How does aging affect recognition of spectrally degraded speech?. Laryngoscope, 2018, 128, .	2.0	22
33	A review of simulation applications in temporal bone surgery. Laryngoscope Investigative Otolaryngology, 2019, 4, 420-424.	1.5	22
34	Development of the Basic Auditory Skills Evaluation Battery for Online Testing of Cochlear Implant Listeners. American Journal of Audiology, 2020, 29, 577-590.	1.2	21
35	Ultrasoundâ€guided needle aspiration: Impact of immediate cytologic review. Laryngoscope, 2010, 120, 1979-1984	2.0	20
36	What to Do When Cochlear Implant Users Plateau in Performance: a Pilot Study of Clinician-guided Aural Rehabilitation. Otology and Neurotology, 2018, 39, e794-e802.	1.3	20

#	Article	IF	CITATIONS
37	The Relationship Between Environmental Sound Awareness and Speech Recognition Skills in Experienced Cochlear Implant Users. Otology and Neurotology, 2017, 38, e308-e314.	1.3	19
38	"Product―Versus "Process―Measures in Assessing Speech Recognition Outcomes in Adults With Cochlear Implants. Otology and Neurotology, 2018, 39, e195-e202.	1.3	18
39	Perceptual weighting strategies of children with cochlear implants and normal hearing. Journal of Communication Disorders, 2014, 52, 111-133.	1.5	17
40	Comparison of Opioid Prescription Patterns and Consumption Following Otologic Surgery. Otology and Neurotology, 2020, 41, 229-234.	1.3	17
41	Detection of eardrum abnormalities using ensemble deep learning approaches. , 2018, , .		17
42	Word Recognition Variability With Cochlear Implants. Otology and Neurotology, 2016, 37, 470-477.	1.3	16
43	How Does Quality of Life Relate to Auditory Abilities? A Subitem Analysis of the Nijmegen Cochlear Implant Questionnaire. Journal of the American Academy of Audiology, 2020, 31, 292-301.	0.7	15
44	How Does Cochlear Implantation Lead to Improvements on a Cognitive Screening Measure?. Journal of Speech, Language, and Hearing Research, 2021, 64, 1053-1061.	1.6	15
45	Bottom-Up Signal Quality Impacts the Role of Top-Down Cognitive-Linguistic Processing During Speech Recognition by Adults with Cochlear Implants. Otology and Neurotology, 2021, 42, S33-S41.	1.3	15
46	Squamous Cell Carcinoma of the Temporal Bone. Otolaryngologic Clinics of North America, 2015, 48, 281-292.	1.1	13
47	The impact of speaking style on speech recognition in quiet and multi-talker babble in adult cochlear implant users. Journal of the Acoustical Society of America, 2020, 147, 101-107.	1.1	13
48	Environmental Sound Awareness in Experienced Cochlear Implant Users and Cochlear Implant Candidates. Otology and Neurotology, 2018, 39, e964-e971.	1.3	12
49	Does Cochlear Implantation Improve Cognitive Function?. Laryngoscope, 2019, 129, 2208-2209.	2.0	12
50	Word and Nonword Reading Efficiency in Postlingually Deafened Adult Cochlear Implant Users. Otology and Neurotology, 2021, 42, e272-e278.	1.3	12
51	Measuring the effects of spectral smearing and enhancement on speech recognition in noise for adults and children. Journal of the Acoustical Society of America, 2015, 137, 2004-2014.	1.1	11
52	How Does Nonverbal Reasoning Affect Sentence Recognition in Adults with Cochlear Implants and Normal-Hearing Peers?. Audiology and Neuro-Otology, 2019, 24, 127-138.	1.3	10
53	SelectStitch: Automated Frame Segmentation and Stitching to Create Composite Images from Otoscope Video Clips. Applied Sciences (Switzerland), 2020, 10, 5894.	2.5	10
54	Explaining Speech Recognition and Quality of Life Outcomes in Adult Cochlear Implant Users: Complementary Contributions of Demographic, Sensory, and Cognitive Factors. Otology and Neurotology, 2020, 41, e795-e803.	1.3	10

#	Article	IF	CITATIONS
55	Patientâ€specific Virtual Temporal Bone Simulation Based on Clinical Coneâ€beam Computed Tomography. Laryngoscope, 2021, 131, 1855-1862.	2.0	10
56	Low-frequency signals support perceptual organization of implant-simulated speech for adults and children. International Journal of Audiology, 2014, 53, 270-284.	1.7	9
57	Relations Between Self-reported Executive Functioning and Speech Perception Skills in Adult Cochlear Implant Users. Otology and Neurotology, 2018, 39, 250-257.	1.3	9
58	Digital Otoscopy Videos Versus Composite Images: A Reader Study to Compare the Accuracy of ENT Physicians. Laryngoscope, 2021, 131, E1668-E1676.	2.0	9
59	Decision fusion on image analysis and tympanometry to detect eardrum abnormalities. , 2020, , .		9
60	Autoscope: automated otoscopy image analysis to diagnose ear pathology and use of clinically motivated eardrum features. Proceedings of SPIE, 2017, , .	0.8	8
61	Cryptococcal meningitis with isolated otologic symptoms. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2010, 31, 49-53.	1.3	7
62	Acoustic Cue Weighting by Adults with Cochlear Implants: A Mismatch Negativity Study. Ear and Hearing, 2016, 37, 465-472.	2.1	7
63	Safetyâ€relevant environmental sound identification in cochlear implant candidates and users. Laryngoscope, 2020, 130, 1547-1551.	2.0	7
64	Comprehensive auditory rehabilitation in adults receiving cochlear implants: A pilot study. Laryngoscope Investigative Otolaryngology, 2020, 5, 911-918.	1.5	7
65	Visual Reliance During Speech Recognition in Cochlear Implant Users and Candidates. Journal of the American Academy of Audiology, 2020, 31, 030-039.	0.7	7
66	The Perception of Regional Dialects and Foreign Accents by Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 2021, 64, 683-690.	1.6	7
67	Intraoperative Electrocochleography: A Window Into Endolymphatic Hydrops in a Patient With an Endolymphatic Sac Tumor. Otology and Neurotology, 2017, 38, 547-550.	1.3	6
68	Electrocochleography During Translabyrinthine Approach for Vestibular Schwannoma Removal. Otology and Neurotology, 2020, 41, e369-e377.	1.3	6
69	OtoPair: Combining Right and Left Eardrum Otoscopy Images to Improve the Accuracy of Automated Image Analysis. Applied Sciences (Switzerland), 2021, 11, 1831.	2.5	6
70	Postoperative Rehabilitation Strategies Used by Adults With Cochlear Implants: A Pilot Study. Laryngoscope Investigative Otolaryngology, 2016, 1, 42-48.	1.5	6
71	Perception of Environmental Sounds in Cochlear Implant Users: A Systematic Review. Frontiers in Neuroscience, 2021, 15, 788899.	2.8	6
72	Advances in Artificial Intelligence to Diagnose Otitis Media: State of the Art Review. Otolaryngology - Head and Neck Surgery, 2023, 168, 635-642.	1.9	6

#	Article	IF	CITATIONS
73	When Should Adults With Bilateral Hearing Loss Be Referred for Cochlear Implant Evaluation?. Laryngoscope, 2021, 131, 1448-1450.	2.0	5
74	A <scp>surgeonâ€scientist'</scp> s perspective and review of <scp>cognitiveâ€linguistic</scp> contributions to adult cochlear implant outcomes. Laryngoscope Investigative Otolaryngology, 2020, 5, 1176-1183.	1,5	5
75	Considerations for Integrating Cognitive Testing Into Adult Cochlear Implant Evaluations—Foundations for the Future. JAMA Otolaryngology - Head and Neck Surgery, 2021, 147, 413.	2.2	5
76	Audiometric findings in children with unilateral enlarged vestibular aqueduct. International Journal of Pediatric Otorhinolaryngology, 2019, 120, 25-29.	1.0	4
77	Intraoperative Electrocochleography in Patients With Menière's Disease Undergoing Endolymphatic Sac Decompression and Shunt Surgery. Otology and Neurotology, 2019, 40, 1208-1216.	1.3	4
78	A Longitudinal Comparison of Environmental Sound Recognition in Adults With Hearing Aids Before and After Cochlear Implantation. Journal of Speech, Language, and Hearing Research, 2021, 64, 1040-1052.	1.6	4
79	The Value of Speech-Language Pathologists in Auditory Rehabilitation for Adults With Cochlear Implants. American Journal of Speech-Language Pathology, 2021, 30, 1909-1911.	1.8	4
80	Talker Adaptation and Lexical Difficulty Impact Word Recognition in Adults with Cochlear Implants. Audiology and Neuro-Otology, 2022, 27, 260-270.	1.3	4
81	Development of a novel screening tool for predicting Cochlear implant candidacy. Laryngoscope Investigative Otolaryngology, 2021, 6, 1406-1413.	1.5	4
82	Neurophysiology of spectrotemporal cue organization of spoken language in auditory memory. Brain and Language, 2014, 130, 42-49.	1.6	3
83	Partial Resection in Microsurgical Management of Vestibular Schwannomas. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 863.	2.2	3
84	Are There Real-world Benefits to Bimodal Listening?. Otology and Neurotology, 2020, 41, e1111-e1117.	1.3	3
85	Intraoperative Electrocochleography of Posterior Fossa Tumors Producing Menière's Syndrome. Otology and Neurotology, 2020, 41, e1237-e1242.	1.3	3
86	Quality of Life Outcomes Reported by Patients and Significant Others Following Cochlear Implantation. American Journal of Audiology, 2020, 29, 404-409.	1.2	3
87	The Impact of Neurocognitive Skills on Recognition of Spectrally Degraded Sentences. Journal of the American Academy of Audiology, 2021, 32, 528-536.	0.7	3
88	OtoXNet—automated identification of eardrum diseases from otoscope videos: a deep learning study for video-representing images. Neural Computing and Applications, 2022, 34, 12197-12210.	5.6	3
89	Cortical Auditory Evoked Potentials to Evaluate Cochlear Implant Candidacy in an Ear With Long-standing Hearing Loss. Annals of Otology, Rhinology and Laryngology, 2016, 125, 858-861.	1.1	2
90	Standard Setting of Competency in Mastoidectomy for the Cross-Institutional Mastoidectomy Assessment Tool. Annals of Otology, Rhinology and Laryngology, 2020, 129, 340-346.	1,1	2

#	Article	IF	CITATIONS
91	Wound breakdown after middle cranial fossa craniotomy: An unusual complication after rhytidectomy. Laryngoscope, 2014, 124, 554-557.	2.0	1
92	Lexical Effects on the Perceived Clarity of Noise-Vocoded Speech in Younger and Older Listeners. Frontiers in Psychology, 2022, 13, 837644.	2.1	1
93	Preoperative Visual Measures of Verbal Learning and Memory and their Relations to Speech Recognition After Cochlear Implantation. Ear and Hearing, 2022, 43, 993-1002.	2.1	1
94	Hearing Loss in Children with Osteogenesis Imperfecta (OI) Treated with Bisphosphonates. Laryngoscope, 2009, 119, S134.	2.0	0
95	Can a Self-report Measure Be Used to Assess Cognitive Skills in Adults With Hearing Loss?. Otology and Neurotology, 2021, 42, e684-e689.	1.3	0
96	Assessment of Reliability and Validity of the Cochlear Implant Skills Review: A New Measure to Evaluate Cochlear Implant Users' Device Skills and Knowledge. American Journal of Audiology, 2021, 30, 105-127.	1.2	0
97	Visual Reliance During Speech Recognition in Cochlear Implant Users and Candidates. Journal of the American Academy of Audiology, 2019, , .	0.7	0
98	How Does Quality of Life Relate to Auditory Abilities? A Subitem Analysis of the Nijmegen Cochlear Implant Questionnaire. Journal of the American Academy of Audiology, 2019, , .	0.7	0
99	OtoMatch: Content-based eardrum image retrieval using deep learning. , 2020, 15, e0232776.		0
100	OtoMatch: Content-based eardrum image retrieval using deep learning. , 2020, 15, e0232776.		0
101	OtoMatch: Content-based eardrum image retrieval using deep learning. , 2020, 15, e0232776.		0
102	OtoMatch: Content-based eardrum image retrieval using deep learning. , 2020, 15, e0232776.		0
103	Contribution of Verbal Learning & Memory and <scp>Spectroâ€Temporal</scp> Discrimination to Speech Recognition in Cochlear Implant Users. Laryngoscope, 2023, 133, 661-669.	2.0	0