
Doris Breuer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1925893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Employing magma ocean crystallization models to constrain structure and composition of the lunar interior. Physics of the Earth and Planetary Interiors, 2022, 322, 106831.	1.9	7
2	The Internal Evolution of Vesta. , 2022, , 53-66.		0
3	Electrical and seismological structure of the martian mantle and the detectability of impact-generated anomalies. Icarus, 2021, 358, 114176.	2.5	2
4	Toward Constraining Mars' Thermal Evolution Using Machine Learning. Earth and Space Science, 2021, 8, e2020EA001484.	2.6	5
5	Seismic Velocity Variations in a 3D Martian Mantle: Implications for the InSight Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006755.	3.6	10
6	Delta Deposits on Mars: A Global Perspective. Geophysical Research Letters, 2021, 48, e2021GL094271.	4.0	11
7	Deep learning for surrogate modeling of two-dimensional mantle convection. Physical Review Fluids, 2021, 6, .	2.5	6
8	The Determination of the Rotational State and Interior Structure of Venus with VERITAS. Planetary Science Journal, 2021, 2, 220.	3.6	18
9	MAGMARS: A Melting Model for the Martian Mantle and FeOâ€Rich Peridotite. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006985.	3.6	5
10	Stagnant-lid convection with diffusion and dislocation creep rheology: Influence of a non-evolving grain size. Geophysical Journal International, 2020, 220, 18-36.	2.4	6
11	A machine-learning-based surrogate model of Mars' thermal evolution. Geophysical Journal International, 2020, 222, 1656-1670.	2.4	6
12	A long-lived magma ocean on a young Moon. Science Advances, 2020, 6, eaba8949.	10.3	76
13	Retrieval of the Fluid Love Number k ₂ in Exoplanetary Transit Curves. Astrophysical Journal, 2019, 878, 119.	4.5	18
14	Magnetic Field Evolution in Terrestrial Bodies from Planetesimals to Exoplanets. , 2019, , 267-285.		2
15	Overturn of Ilmeniteâ€Bearing Cumulates in a Rheologically Weak Lunar Mantle. Journal of Geophysical Research E: Planets, 2019, 124, 418-436.	3.6	34
16	Pre-mission InSights on the Interior of Mars. Space Science Reviews, 2019, 215, 1.	8.1	85
17	Scaling laws of convection for cooling planets in a stagnant lid regime. Physics of the Earth and Planetary Interiors, 2019, 286, 138-153.	1.9	28
18	Dynamical effects of multiple impacts: Large impacts on a Mars-like planet. Physics of the Earth and Planetary Interiors, 2019, 287, 76-92.	1.9	5

#	Article	IF	CITATIONS
19	The next frontier for planetary and human exploration. Nature Astronomy, 2019, 3, 116-120.	10.1	39
20	Mantle Convection. , 2019, , 1-9.		0
21	Top-down freezing in a Fe–FeS core and Ganymede's present-day magnetic field. Icarus, 2018, 307, 172-19	96.2.5	21
22	Presentâ€Day Mars' Seismicity Predicted From 3â€D Thermal Evolution Models of Interior Dynamics. Geophysical Research Letters, 2018, 45, 2580-2589.	4.0	35
23	Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hfâ€W Chronometry of Iron Meteorites. Journal of Geophysical Research E: Planets, 2018, 123, 421-444.	3.6	10
24	Modeling the evolution of the parent body of acapulcoites and lodranites: A case study for partially differentiated asteroids. Icarus, 2018, 311, 146-169.	2.5	48
25	"lsocrater―impacts: Conditions and mantle dynamical responses for different impactor types. Icarus, 2018, 306, 94-115.	2.5	4
26	Hemispheric Dichotomy in Lithosphere Thickness on Mars Caused by Differences in Crustal Structure and Composition. Journal of Geophysical Research E: Planets, 2018, 123, 823-848.	3.6	24
27	The Thermal State and Interior Structure of Mars. Geophysical Research Letters, 2018, 45, 12,198.	4.0	69
28	The Heat Flow and Physical Properties Package (HP3) for the InSight Mission. Space Science Reviews, 2018, 214, 1.	8.1	105
29	Early planetary atmospheres and surfaces: Origin of the Earth's water, crust and atmosphere. Proceedings of the International Astronomical Union, 2018, 14, 156-163.	0.0	1
30	Interiors and Atmospheres. , 2018, , 221-245.		0
31	Onset of solidâ€state mantle convection and mixing during magma ocean solidification. Journal of Geophysical Research E: Planets, 2017, 122, 577-598.	3.6	69
32	On the relative importance of thermal and chemical buoyancy in regular and impactâ€induced melting in a Marsâ€like planet. Journal of Geophysical Research E: Planets, 2017, 122, 1554-1579.	3.6	20
33	The habitability of a stagnant-lid Earth. Astronomy and Astrophysics, 2017, 605, A71.	5.1	63
34	How large are present-day heat flux variations across the surface of Mars?. Journal of Geophysical Research E: Planets, 2016, 121, 2386-2403.	3.6	81
35	Water in the Martian interior—The geodynamical perspective. Meteoritics and Planetary Science, 2016, 51, 1959-1992.	1.6	20
36	A review of volatiles in the Martian interior. Meteoritics and Planetary Science, 2016, 51, 1935-1958.	1.6	43

Doris Breuer

#	Article	IF	CITATIONS
37	PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS. Origins of Life and Evolution of Biospheres, 2016, 46, 369-384.	1.9	2
38	Large Scale Numerical Simulations of Planetary Interiors. , 2016, , 675-687.		1
39	Modelling the internal structure of Ceres: Coupling of accretion with compaction by creep and implications for the water-rock differentiation. Astronomy and Astrophysics, 2015, 584, A117.	5.1	25
40	Water-Rock Differentiation of Icy Bodies by Darcy law, Stokes law, and Two-Phase Flow. Proceedings of the International Astronomical Union, 2015, 11, 261-266.	0.0	4
41	Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons. Progress in Earth and Planetary Science, 2015, 2, .	3.0	61
42	The Fe snow regime in Ganymede's core: A deepâ€seated dynamo below a stable snow zone. Journal of Geophysical Research E: Planets, 2015, 120, 1095-1118.	3.6	49
43	Mercury's lowâ€degree geoid and topography controlled by insolationâ€driven elastic deformation. Geophysical Research Letters, 2015, 42, 7327-7335.	4.0	16
44	Thermal evolution and Urey ratio of Mars. Journal of Geophysical Research E: Planets, 2015, 120, 995-1010.	3.6	48
45	Estimating precipitation on early Mars using a radiative-convective model of the atmosphere and comparison with inferred runoff from geomorphology. Planetary and Space Science, 2015, 105, 133-147.	1.7	15
46	Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io. , 2015, , 255-305.		30
47	Thermo-Chemical Mantle Convection Simulations Using Gaia. , 2015, , 613-627.		Ο
48	Modelling of compaction in planetesimals. Astronomy and Astrophysics, 2014, 567, A120.	5.1	20
49	Evolution of Planetary Interiors. , 2014, , 185-208.		2
50	A long-lived lunar dynamo powered by core crystallization. Earth and Planetary Science Letters, 2014, 401, 251-260.	4.4	105
51	Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?. Earth and Planetary Science Letters, 2014, 403, 225-235.	4.4	31
52	Partial melting in one-plate planets: Implications for thermo-chemical and atmospheric evolution. Planetary and Space Science, 2014, 98, 50-65.	1.7	30
53	Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 2014, 395, 267-280.	4.4	117
54	Can the interior structure influence the habitability of a rocky planet?. Planetary and Space Science, 2014, 98, 14-29.	1.7	55

#	Article	IF	CITATIONS
55	The tectonic mode of rocky planets: Part 1 – Driving factors, models & parameters. Icarus, 2014, 234, 174-193.	2.5	30
56	Plate tectonics on rocky exoplanets: Influence of initial conditions and mantle rheology. Planetary and Space Science, 2014, 98, 41-49.	1.7	106
57	The thermo-chemical evolution of Asteroid 21 Lutetia. Icarus, 2013, 224, 126-143.	2.5	14
58	Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity. Journal of Fluid Mechanics, 2013, 735, 647-683.	3.4	32
59	Outgassing History and Escape of the Martian Atmosphere and Water Inventory. Space Science Reviews, 2013, 174, 113-154.	8.1	159
60	Long-Term Evolution of the Martian Crust-Mantle System. Space Science Reviews, 2013, 174, 49-111.	8.1	124
61	Overturn and evolution of a crystallized magma ocean: A numerical parameter study for Mars. Journal of Geophysical Research E: Planets, 2013, 118, 1512-1528.	3.6	35
62	First- and second-order Frank-Kamenetskii approximation applied to temperature-, pressure- and stress-dependent rheology. Geophysical Journal International, 2013, 195, 27-46.	2.4	18
63	Asymmetric thermal evolution of the Moon. Journal of Geophysical Research E: Planets, 2013, 118, 1435-1452.	3.6	193
64	Thermochemical evolution of Mercury's interior. Journal of Geophysical Research E: Planets, 2013, 118, 2474-2487.	3.6	113
65	A Particle-in-Cell Method to Model the Influence of Partial Melt on Mantle Convection. , 2013, , 461-472.		1
66	Interior and Surface Dynamics of Terrestrial Bodies and their Implications for the Habitability. Cellular Origin and Life in Extreme Habitats, 2013, , 203-233.	0.3	5
67	Magma Ocean Cumulate Overturn and Its Implications for the Thermo-chemical Evolution of Mars. , 2013, , 619-634.		0
68	THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS. Astrophysical Journal, 2012, 748, 41.	4.5	117
69	Differentiation and core formation in accreting planetesimals. Astronomy and Astrophysics, 2012, 543, A141.	5.1	64
70	Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus. Icarus, 2012, 217, 484-498.	2.5	60
71	Mars' atmospheric 40Ar: A tracer for past crustal erosion. Icarus, 2012, 218, 561-570.	2.5	12
72	Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution. Planetary and Space Science, 2012, 68, 123-145.	1.7	32

#	Article	IF	CITATIONS
73	Long-Term Evolution of the Martian Crust-Mantle System. Space Sciences Series of ISSI, 2012, , 49-111.	0.0	4
74	Outgassing History and Escape of the Martian Atmosphere and Water Inventory. Space Sciences Series of ISSI, 2012, , 113-154.	0.0	6
75	Thermo-chemical evolution and global contraction of mercury. Earth and Planetary Science Letters, 2011, 307, 135-146.	4.4	71
76	Volcanic outgassing of CO2 and H2O on Mars. Earth and Planetary Science Letters, 2011, 308, 391-400.	4.4	139
77	Regime classification and planform scaling for internally heated mantle convection. Physics of the Earth and Planetary Interiors, 2011, 186, 111-124.	1.9	11
78	Thermal and transport properties of mantle rock at high pressure: Applications to super-Earths. Icarus, 2011, 216, 572-596.	2.5	110
79	Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus, 2011, 212, 541-558.	2.5	113
80	Thermal Evolution and Magnetic Field Generation inÂTerrestrial Planets and Satellites. Space Science Reviews, 2010, 152, 449-500.	8.1	64
81	Planetary Magnetism—Foreword. Space Science Reviews, 2010, 152, 1-3.	8.1	0
82	How would life factor in the evolution of planetary interiors?. Physics of Life Reviews, 2010, 7, 471-472.	2.8	1
83	Geophysical and Atmospheric Evolution of Habitable Planets. Astrobiology, 2010, 10, 45-68.	3.0	47
84	On the spatial variability of the Martian elastic lithosphere thickness: Evidence for mantle plumes?. Journal of Geophysical Research, 2010, 115, .	3.3	65
85	Gravity signals on Europa from silicate shell density variations. Journal of Geophysical Research, 2010, 115, .	3.3	15
86	Thermal Evolution and Magnetic Field Generation inÂTerrestrial Planets and Satellites. Space Sciences Series of ISSI, 2010, , 449-500.	0.0	0
87	Implications of large elastic thicknesses for the composition and current thermal state of Mars. Icarus, 2009, 201, 540-548.	2.5	30
88	Mars environment and magnetic orbiter model payload. Experimental Astronomy, 2009, 23, 761-783.	3.7	7
89	Mars Environment and Magnetic Orbiter Scientific and Measurement Objectives. Astrobiology, 2009, 9, 71-89.	3.0	4
90	4.2.3.4 Dynamics and thermal evolution. Landolt-Bâ^šâ^,rnstein - Group VI Astronomy and Astrophysics, 2009, , 323-344.	0.1	7

#	Article	IF	CITATIONS
91	The evolution of the martian elastic lithosphere and implications for crustal and mantle rheology. Icarus, 2008, 193, 503-515.	2.5	78
92	Constraints on the radiogenic heat production rate in the Martian interior from viscous relaxation of crustal thickness variations. Geophysical Research Letters, 2008, 35, .	4.0	8
93	Constraints on the maximum crustal density from gravity–topography modeling: Applications to the southern highlands of Mars. Earth and Planetary Science Letters, 2008, 276, 253-261.	4.4	27
94	Interior Evolution of Mercury. Space Sciences Series of ISSI, 2008, , 47-78.	0.0	1
95	Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io. , 2007, , 299-348.		23
96	An alternative mechanism for recent volcanism on Mars. Geophysical Research Letters, 2007, 34, .	4.0	47
97	Water, Life, and Planetary Geodynamical Evolution. Space Science Reviews, 2007, 129, 167-203.	8.1	28
98	Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars. Space Science Reviews, 2007, 129, 279-300.	8.1	53
99	A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars. Space Science Reviews, 2007, 129, 207-243.	8.1	110
100	Interior Evolution of Mercury. Space Science Reviews, 2007, 132, 229-260.	8.1	71
101	Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars. Space Sciences Series of ISSI, 2007, , 279-300.	0.0	5
102	A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars. Space Sciences Series of ISSI, 2007, , 207-243.	0.0	4
103	Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io. , 2007, , 299-348.		35
104	Water, Life, and Planetary Geodynamical Evolution. Space Sciences Series of ISSI, 2007, , 167-203.	0.0	1
105	Influence of a variable thermal conductivity on the thermochemical evolution of Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	53
106	Correction to "Influence of a variable thermal conductivity on the thermochemical evolution of Mars― Journal of Geophysical Research, 2006, 111, .	3.3	3
107	Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field. Planetary and Space Science, 2006, 54, 153-169.	1.7	96
108	A model for the interior structure, evolution, and differentiation of Callisto. Icarus, 2004, 169, 402-412.	2.5	57

#	Article	IF	CITATIONS
109	DYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields. Advances in Space Research, 2004, 33, 2228-2235.	2.6	3
110	Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. Journal of Geophysical Research, 2003, 108, .	3.3	187
111	Implications from Galileo Observations on the Interior Structure and Chemistry of the Galilean Satellites. Icarus, 2002, 157, 104-119.	2.5	204
112	Numerical Modeling of 26Al-Induced Radioactive Melting of Asteroids Considering Accretion. Icarus, 2002, 159, 183-191.	2.5	102
113	The Lavoisier mission : A system of descent probe and balloon flotilla for geochemical investigation of the deep atmosphere and surface of Venus. Advances in Space Research, 2002, 29, 255-264.	2.6	6
114	Scientific objectives of the DYNAMO mission. Advances in Space Research, 2001, 27, 1851-1860.	2.6	4
115	The Longevity of Lunar Volcanism: Implications of Thermal Evolution Calculations with 2D and 3D Mantle Convection Models. Icarus, 2001, 149, 54-65.	2.5	95
116	Geophysical Constraints on the Evolution of Mars. Space Science Reviews, 2001, 96, 231-262.	8.1	83
117	Geophysical Constraints on the Evolution of Mars. Space Sciences Series of ISSI, 2001, , 231-262.	0.0	5
118	The NetLander very broad band seismometer. Planetary and Space Science, 2000, 48, 1289-1302.	1.7	61
119	Symmetries of volcanic distributions on Mars and Earth and their mantle plume dynamics. Journal of Geophysical Research, 1998, 103, 28587-28597.	3.3	6
120	Three dimensional models of Martian mantle convection with phase transitions. Geophysical Research Letters, 1998, 25, 229-232.	4.0	70
121	Phase transitions in the Martian mantle: Implications for partially layered convection. Earth and Planetary Science Letters, 1997, 148, 457-469.	4.4	67
122	Phase transitions in the Martian mantle: Implications for the planet's volcanic history. Journal of Geophysical Research, 1996, 101, 7531-7542.	3.3	36
123	Deglacial land emergence and lateral upper-mantle heterogeneity in the Svalbard Archipelago-I. First results for simple load models. Geophysical Journal International, 1995, 121, 775-788.	2.4	29
124	Possible flush instability in mantle convection at the Archaean–Proterozoic transition. Nature, 1995, 378, 608-610.	27.8	66
125	Phase transitions in the Martian mantle and the generation of megaplumes. Geophysical Research Letters, 1995, 22, 1945-1948.	4.0	17
126	Mantle differentiation and the crustal dichotomy of Mars. Planetary and Space Science, 1993, 41, 269-283.	1.7	50

#	Article	IF	CITATIONS
127	Cooling of the Earth, Urey ratios, and the problem of potassium in the core. Geophysical Research Letters, 1993, 20, 1655-1658.	4.0	33
128	SCIENTIFIC AND TECHNICAL ASPECTS OF THE ESA MARSNEXT MISSION. , 0, , 235-249.		1
129	Interiors of Earth-Like Planets and Satellites of the Solar System. Surveys in Geophysics, 0, , 1.	4.6	5