Ramanuj Dasgupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1923855/publications.pdf

Version: 2024-02-01

63 papers 6,545 citations

147801 31 h-index 110387 64 g-index

72 all docs

72 docs citations

times ranked

72

9384 citing authors

#	Article	IF	CITATIONS
1	Identification of mechanism of cancer-cell-specific reactivation of <i>hTERT</i> offers therapeutic opportunities for blocking telomerase specifically in human colorectal cancer. Nucleic Acids Research, 2023, 51, 1-16.	14.5	10
2	Genome-wide screens identify specific drivers of mutant <i>hTERT</i> promoters. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
3	Trajectory of immune evasion and cancer progression in hepatocellular carcinoma. Nature Communications, 2022, 13, 1441.	12.8	28
4	Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nature Genetics, 2022, 54, 963-975.	21.4	106
5	miR-582-5p Is a Tumor Suppressor microRNA Targeting the Hippo-YAP/TAZ Signaling Pathway in Non-Small Cell Lung Cancer. Cancers, 2021, 13, 756.	3.7	21
6	A chemical genetic screen identifies Aurora kinases as a therapeutic target in EGFR T790M negative, gefitinib-resistant head and neck squamous cell carcinoma (HNSCC). EBioMedicine, 2021, 64, 103220.	6.1	10
7	Pan-Cancer Analysis of Ligand–Receptor Cross-talk in the Tumor Microenvironment. Cancer Research, 2021, 81, 1802-1812.	0.9	41
8	Targeting the developmental origins of cancer. Nature Cancer, 2021, 2, 256-257.	13.2	2
9	DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nature Communications, 2021, 12, 2284.	12.8	28
10	Single-Cell RNA-seq Reveals Angiotensin-Converting Enzyme 2 and Transmembrane Serine Protease 2 Expression in TROP2+ Liver Progenitor Cells: Implications in Coronavirus Disease 2019-Associated Liver Dysfunction. Frontiers in Medicine, 2021, 8, 603374.	2.6	28
11	tRNA-derived fragments (tRFs): establishing their turf in post-transcriptional gene regulation. Cellular and Molecular Life Sciences, 2021, 78, 2607-2619.	5.4	50
12	LncRNA SFTA1P mediates positive feedback regulation of the Hippo-YAP/TAZ signaling pathway in non-small cell lung cancer. Cell Death Discovery, 2021, 7, 369.	4.7	14
13	Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Genome Medicine, 2021, 13, 189.	8.2	20
14	Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma. Cell, 2020, 183, 377-394.e21.	28.9	329
15	Two high-yield complementary methods to sort cell populations by their 2D or 3D migration speed. Molecular Biology of the Cell, 2020, 31, 2779-2790.	2.1	1
16	Single-cell analysis of EphA clustering phenotypes to probe cancer cell heterogeneity. Communications Biology, 2020, 3, 429.	4.4	2
17	Tracking tumor evolution one-cell-at-a-time. Molecular and Cellular Oncology, 2019, 6, 1590089.	0.7	6
18	Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions. Lab on A Chip, 2019, 19, 2178-2191.	6.0	64

#	Article	IF	Citations
19	Dynamic expression of tRNAâ€derived small RNAs define cellular states. EMBO Reports, 2019, 20, e47789.	4.5	100
20	Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. Nature Communications, 2018, 9, 4931.	12.8	134
21	The transcription factor Lef1 switches partners from \hat{l}^2 -catenin to Smad3 during muscle stem cell quiescence. Science Signaling, 2018, 11, .	3.6	30
22	Disrupting Interactions Between \hat{l}^2 -Catenin and Activating TCFs Reconstitutes Ground State Pluripotency in Mouse Embryonic Stem Cells. Stem Cells, 2017, 35, 1924-1933.	3.2	4
23	A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication, 2017, 9, 045005.	7.1	85
24	Long noncoding RNA EGFR-AS1 mediates epidermal growth factor receptor addiction and modulates treatment response in squamous cell carcinoma. Nature Medicine, 2017, 23, 1167-1175.	30.7	141
25	Identification and characterization of a novel Sso7d scaffold-based binder against Notch1. Scientific Reports, 2017, 7, 12021.	3.3	9
26	Phenotype-driven precision oncology as a guide for clinical decisions one patient at a time. Nature Communications, 2017, 8, 435.	12.8	75
27	TCF7L1 Modulates Colorectal Cancer Growth by Inhibiting Expression of the Tumor-Suppressor Gene EPHB3. Scientific Reports, 2016, 6, 28299.	3.3	42
28	Colorectal cancer atlas: An integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues. Nucleic Acids Research, 2016, 44, D969-D974.	14.5	55
29	Inhibition of β-catenin–TCF1 interaction delays differentiation of mouse embryonic stem cells. Journal of Cell Biology, 2015, 211, 39-51.	5.2	32
30	Inhibition of β-catenin–TCF1 interaction delays differentiation of mouse embryonic stem cells. Journal of Experimental Medicine, 2015, 212, 212110IA90.	8.5	0
31	Wnt Coreceptor <i>Lrp5</i> Is a Driver of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 185-195.	5.6	95
32	Wnt inhibition leads to improved chemosensitivity in paediatric acute lymphoblastic leukaemia. British Journal of Haematology, 2014, 167, 87-99.	2.5	61
33	Luciferase Reporter Assay in Drosophila and Mammalian Tissue Culture Cells. Current Protocols in Chemical Biology, 2014, 6, 7-23.	1.7	15
34	The miR-310/13 cluster antagonizes \hat{l}^2 -catenin function in the regulation of germ and somatic cell differentiation in the $\langle i \rangle$ Drosophila $\langle i \rangle$ testis. Development (Cambridge), 2013, 140, 2904-2916.	2.5	36
35	PAPTi: A Peptide Aptamer Interference Toolkit for Perturbation of Protein-Protein Interaction Networks. Scientific Reports, 2013, 3, 1156.	3.3	28
36	A membrane-associated \hat{l}^2 -catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. Development (Cambridge), 2013, 140, 1171-1183.	2.5	113

#	Article	IF	CITATIONS
37	Inhibition of androgen receptor and \hat{I}^2 -catenin activity in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15710-15715.	7.1	85
38	Inhibition Of The Wnt Pathway Leads To Improved Chemosensitivity In Pediatric Acute Lymphoblastic Leukemia. Blood, 2013, 122, 1428-1428.	1.4	8
39	A membrane-associated \hat{l}^2 -catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. Journal of Cell Science, 2013, 126, e1-e1.	2.0	2
40	HIV's Nef Interacts with β-Catenin of the Wnt Signaling Pathway in HEK293 Cells. PLoS ONE, 2013, 8, e77865.	2.5	15
41	Regulation of Pluripotency and Cellular Reprogramming by the Ubiquitin-Proteasome System. Cell Stem Cell, 2012, 11, 783-798.	11.1	235
42	An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/ <i>wingless</i> signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5954-5963.	7.1	300
43	Yan, an ETSâ€domain transcription factor, negatively modulates the Wingless pathway in the <i>Drosophila</i> eye. EMBO Reports, 2011, 12, 1047-1054.	4.5	35
44	Postgenomic technologies targeting the Wnt signaling network. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 649-665.	6.6	3
45	A Systematic Screen for Micro-RNAs Regulating the Canonical Wnt Pathway. PLoS ONE, 2011, 6, e26257.	2.5	63
46	Exploration of Self-Renewal and Pluripotency in ES Cells Using RNAi. Methods in Enzymology, 2010, 477, 351-365.	1.0	10
47	Bili Inhibits Wnt/ \hat{I}^2 -Catenin Signaling by Regulating the Recruitment of Axin to LRP6. PLoS ONE, 2009, 4, e6129.	2.5	25
48	Functional Genomic Approaches Targeting the Wnt Signaling Network. Current Drug Targets, 2009, 10, 620-631.	2.1	8
49	Function of the Wingless Signaling Pathway in Drosophila. Methods in Molecular Biology, 2008, 469, 115-125.	0.9	15
50	High-Throughput RNAi Screen in Drosophila. Methods in Molecular Biology, 2008, 469, 163-184.	0.9	8
51	A case study of the reproducibility of transcriptional reporter cell-based RNAi screens in Drosophila. Genome Biology, 2007, 8, R203.	9.6	35
52	Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature, 2006, 439, 604-607.	27.8	337
53	Functional Genomic Analysis of the Wnt-Wingless Signaling Pathway. Science, 2005, 308, 826-833.	12.6	325
54	Notch modulates Wnt signalling by associating with Armadillo/ \hat{l}^2 -catenin and regulating its transcriptional activity. Development (Cambridge), 2005, 132, 1819-1830.	2.5	176

#	Article	IF	CITATIONS
55	Drosophila Wnt/Fz Pathways. Science Signaling, 2005, 2005, cm5-cm5.	3. 6	9
56	Using RNAi to catch Drosophila genes in a web of interactions: insights into cancer research. Oncogene, 2004, 23, 8359-8365.	5.9	46
57	The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors. Developmental Biology, 2004, 276, 89-100.	2.0	110
58	Links between signal transduction, transcription and adhesion in epithelial bud development. Nature, 2003, 422, 317-322.	27.8	537
59	A developmental conundrum. Journal of Cell Biology, 2002, 158, 331-344.	5.2	81
60	At the Roots of a Never-Ending Cycle. Developmental Cell, 2001, 1, 13-25.	7.0	253
61	Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes and Development, 2001, 15, 1688-1705.	5.9	504
62	De Novo Hair Follicle Morphogenesis and Hair Tumors in Mice Expressing a Truncated \hat{l}^2 -Catenin in Skin. Cell, 1998, 95, 605-614.	28.9	1,301
63	The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Current Biology, 1997, 7, 468-478.	3.9	185