Aldons J Lusis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1922742/publications.pdf

Version: 2024-02-01

356 58,897 100 229
papers citations h-index g-index

381 381 381 60473
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cardiomyocytes disrupt pyrimidine biosynthesis in nonmyocytes to regulate heart repair. Journal of Clinical Investigation, 2022, 132 , .	8.2	16
2	$\hat{l}^2 3$ -Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. Journal of Clinical Investigation, 2022, 132 , .	8.2	42
3	Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms. ELife, 2022, 11 , .	6.0	27
4	A mechanistic framework for cardiometabolic and coronary artery diseases., 2022, 1, 85-100.		51
5	Placental genomics mediates genetic associations with complex health traits and disease. Nature Communications, 2022, 13, 706.	12.8	20
6	Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Research in Cardiology, 2022, 117, 6.	5.9	22
7	Identification of DNA Damage Repair Enzyme <i>Ascc2</i> as Causal for Heart Failure With Preserved Ejection Fraction. Circulation, 2022, 145, 1102-1104.	1.6	6
8	Atherosclerosis: Recent developments. Cell, 2022, 185, 1630-1645.	28.9	311
9	Oxy210, a Semi-Synthetic Oxysterol, Exerts Anti-Inflammatory Effects in Macrophages via Inhibition of Toll-like Receptor (TLR) 4 and TLR2 Signaling and Modulation of Macrophage Polarization. International Journal of Molecular Sciences, 2022, 23, 5478.	4.1	9
10	Altered branched-chain \hat{l}_{\pm} -keto acid metabolism is a feature of NAFLD in individuals with severe obesity. JCI Insight, 2022, 7, .	5.0	16
11	Sex differences in heart mitochondria regulate diastolic dysfunction. Nature Communications, 2022, 13, .	12.8	30
12	Local M-CSF (Macrophage Colony-Stimulating Factor) Expression Regulates Macrophage Proliferation and Apoptosis in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 220-233.	2.4	38
13	Liver Pyruvate Kinase Promotes NAFLD/NASH in Both Mice and Humans in a Sex-Specific Manner. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 389-406.	4.5	37
14	The Genetic Architecture of Carbon Tetrachloride-Induced Liver Fibrosis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 199-220.	4.5	19
15	Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environment International, 2021, 146, 106260.	10.0	42
16	<i>RIPK1</i> Expression Associates With Inflammation in Early Atherosclerosis in Humans and Can Be Therapeutically Silenced to Reduce NF-ÎB Activation and Atherogenesis in Mice. Circulation, 2021, 143, 163-177.	1.6	102
17	Metabolic reprogramming and epigenetic changes of vital organs in SARS-CoV-2–induced systemic toxicity. JCI Insight, 2021, 6, .	5.0	57
18	An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nature Communications, 2021, 12, 547.	12.8	35

#	Article	IF	Citations
19	Genetic regulation of liver lipids in a mouse model of insulin resistance and hepatic steatosis. Molecular Systems Biology, 2021, 17, e9684.	7.2	16
20	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	21.4	676
21	Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection. Journal of Lipid Research, 2021, 62, 100061.	4.2	44
22	Machine Learning Reveals Time-Varying Microbial Predictors with Complex Effects on Glucose Regulation. MSystems, 2021, 6, .	3.8	13
23	Loop Diuretics Inhibit Renal Excretion of Trimethylamine N-Oxide. JACC Basic To Translational Science, 2021, 6, 103-115.	4.1	7
24	Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease. American Journal of Human Genetics, 2021, 108, 411-430.	6.2	20
25	A vicious cycle in atherosclerosis. Cell, 2021, 184, 1139-1141.	28.9	11
26	Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. Journal of Clinical Investigation, 2021, 131, .	8.2	34
27	Transcription Factor MAFF (MAF Basic Leucine Zipper Transcription Factor F) Regulates an Atherosclerosis Relevant Network Connecting Inflammation and Cholesterol Metabolism. Circulation, 2021, 143, 1809-1823.	1.6	28
28	ABCB10 exports mitochondrial biliverdin, driving metabolic maladaptation in obesity. Science Translational Medicine, 2021, 13, .	12.4	27
29	Sexually Dimorphic Relationships Among Saa3 (Serum Amyloid A3), Inflammation, and Cholesterol Metabolism Modulate Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e299-e313.	2.4	10
30	Oxy210, a novel inhibitor of hedgehog and TGFâ€Î² signalling, ameliorates hepatic fibrosis and hypercholesterolemia in mice. Endocrinology, Diabetes and Metabolism, 2021, 4, e00296.	2.4	13
31	NOTUM promotes thermogenic capacity and protects against diet-induced obesity in male mice. Scientific Reports, 2021, 11, 16409.	3.3	3
32	Dietary and Pharmacologic Manipulations of Host Lipids and Their Interaction With the Gut Microbiome in Non-human Primates. Frontiers in Medicine, 2021, 8, 646710.	2.6	6
33	Genome-Wide Association Study Identifies a Functional <i>SIDT2</i> Variant Associated With HDL-C (High-Density Lipoprotein Cholesterol) Levels and Premature Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2494-2508.	2.4	10
34	Pcpe2, a Novel Extracellular Matrix Protein, Regulates Adipocyte SR-Bl–Mediated High-Density Lipoprotein Uptake. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2708-2725.	2.4	6
35	Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Scientific Reports, 2021, 11, 518.	3.3	70
36	Gene-Environment Interactions for Cardiovascular Disease. Current Atherosclerosis Reports, 2021, 23, 75.	4.8	12

#	Article	IF	CITATIONS
37	Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nature Metabolism, 2021, 3, 1552-1568.	11.9	32
38	Serum lipids are associated with nonalcoholic fatty liver disease: a pilot case-control study in Mexico. Lipids in Health and Disease, 2021, 20, 136.	3.0	6
39	Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature, 2021, 599, 296-301.	27.8	36
40	Fecal Microbiome Composition Does Not Predict Dietâ€Induced TMAO Production in Healthy Adults. Journal of the American Heart Association, 2021, 10, e021934.	3.7	14
41	Roles of Macrophages in Atherogenesis. Frontiers in Pharmacology, 2021, 12, 785220.	3.5	38
42	The Nutritional Supplement L-Alpha Glycerylphosphorylcholine Promotes Atherosclerosis. International Journal of Molecular Sciences, 2021, 22, 13477.	4.1	16
43	Suppression of inflammatory arthritis in human serum paraoxonase 1 transgenic mice. Scientific Reports, 2020, 10, 16848.	3.3	9
44	RIPK1 gene variants associate with obesity in humans and can be therapeutically silenced to reduce obesity in mice. Nature Metabolism, 2020, 2, 1113-1125.	11.9	34
45	Estrogen receptor $\hat{l}\pm$ controls metabolism in white and brown adipocytes by regulating <i>Polg1</i> and mitochondrial remodeling. Science Translational Medicine, 2020, 12, .	12.4	64
46	Host Genetic Background and Gut Microbiota Contribute to Differential Metabolic Responses to Fructose Consumption in Mice. Journal of Nutrition, 2020, 150, 2716-2728.	2.9	15
47	Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nature Metabolism, 2020, 2, 974-988.	11.9	40
48	Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling. Journal of the American Heart Association, 2020, 9, e014257.	3.7	4
49	Systems Genetics for Mechanistic Discovery in Heart Diseases. Circulation Research, 2020, 126, 1795-1815.	4.5	8
50	FAM13A affects body fat distribution and adipocyte function. Nature Communications, 2020, 11, 1465.	12.8	36
51	Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell, 2020, 182, 545-562.e23.	28.9	113
52	Tribute to Dr. Steve Schwartz. Journal of Molecular and Cellular Cardiology, 2020, 147, A5-A6.	1.9	0
53	Collaborative interactions of heterogenous ribonucleoproteins contribute to transcriptional regulation of sterol metabolism in mice. Nature Communications, 2020, 11, 984.	12.8	10
54	Rosuvastatin Prevents the Exacerbation of Atherosclerosis in Ligature-Induced Periodontal Disease Mouse Model. Scientific Reports, 2020, 10, 6383.	3.3	20

#	Article	IF	Citations
55	Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for "polygenic epistasis― PLoS Genetics, 2020, 16, e1009165.	3.5	7
56	Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. Molecular Cell, 2019, 75, 644-660.e5.	9.7	488
57	Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host and Microbe, 2019, 26, 252-264.e10.	11.0	274
58	Isoproterenol-Induced Cardiac Diastolic Dysfunction in Mice: A Systems Genetics Analysis. Frontiers in Cardiovascular Medicine, 2019, 6, 100.	2.4	15
59	Diesel Exhaust Induces Mitochondrial Dysfunction, Hyperlipidemia, and Liver Steatosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1776-1786.	2.4	30
60	Sex-specific metabolic functions of adipose Lipocalin-2. Molecular Metabolism, 2019, 30, 30-47.	6.5	41
61	Y-Chromosome Genetic Variation Associated With Atherosclerosis and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2201-2202.	2.4	3
62	Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Human Molecular Genetics, 2019, 28, 4161-4172.	2.9	41
63	Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits. Cell Metabolism, 2019, 29, 932-949.e4.	16.2	79
64	Systems genetics applications in metabolism research. Nature Metabolism, 2019, 1, 1038-1050.	11.9	35
65	Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits. American Journal of Human Genetics, 2019, 105, 773-787.	6.2	45
66	Diesel exhaust particles dysregulate multiple immunological pathways in murine macrophages: Lessons from microarray and scRNA-seq technologies. Archives of Biochemistry and Biophysics, 2019, 678, 108116.	3.0	10
67	Systems-based approaches for investigation of inter-tissue communication. Journal of Lipid Research, 2019, 60, 450-455.	4.2	9
68	PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity. Antioxidants, 2019, 8, 19.	5.1	19
69	XX sex chromosome complement promotes atherosclerosis in mice. Nature Communications, 2019, 10, 2631.	12.8	48
70	Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure. Nature Communications, 2019, 10, 2760.	12.8	22
71	Contribution of Gene Regulatory Networks to Heritability of CoronaryÂArtery Disease. Journal of the American College of Cardiology, 2019, 73, 2946-2957.	2.8	45
72	Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Diabetes, 2019, 68, 1730-1746.	0.6	201

#	Article	IF	Citations
73	Genetic Deficiency of Flavin-Containing Monooxygenase 3 (<i>Fmo3</i>) Protects Against Thrombosis but Has Only a Minor Effect on Plasma Lipid Levels—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1045-1054.	2.4	41
74	Noggin depletion in adipocytes promotes obesity in mice. Molecular Metabolism, 2019, 25, 50-63.	6.5	14
75	Targeted deletion of Tcf7l2 in adipocytes promotes adipocyte hypertrophy and impaired glucose metabolism. Molecular Metabolism, 2019, 24, 44-63.	6.5	46
76	A comparison between whole transcript and $3\hat{a}\in^{\mathbb{M}}$ RNA sequencing methods using Kapa and Lexogen library preparation methods. BMC Genomics, 2019, 20, 9.	2.8	66
77	An integrative systems genetic analysis of mammalian lipid metabolism. Nature, 2019, 567, 187-193.	27.8	101
78	DNA Methylation Changes More Slowly Than Physiological States in Response to Weight Loss in Genetically Diverse Mouse Strains. Frontiers in Endocrinology, 2019, 10, 882.	3.5	7
79	A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity. PLoS Genetics, 2019, 15, e1008528.	3.5	9
80	The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle. Molecular Metabolism, 2019, 21, 51-67.	6.5	83
81	Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity. Journal of Lipid Research, 2019, 60, 594-608.	4.2	19
82	The E3 ligase MARCH5 is a PPAR $\hat{1}^3$ target gene that regulates mitochondria and metabolism in adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E293-E304.	3.5	19
83	Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. ELife, 2019, 8, .	6.0	93
84	A personalized, multiomics approach identifies genes involved in cardiac hypertrophy and heart failure. Npj Systems Biology and Applications, 2018, 4, 12.	3.0	22
85	Topological Arrangement of Cardiac Fibroblasts Regulates Cellular Plasticity. Circulation Research, 2018, 123, 73-85.	4.5	42
86	Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS. Nature Communications, 2018, 9, 1512.	12.8	75
87	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nature Genetics, 2018, 50, 572-580.	21.4	143
88	Genomewide Association Study Identifies Cxcl Family Members as Partial Mediators of LPS-Induced Periodontitis. Journal of Bone and Mineral Research, 2018, 33, 1450-1463.	2.8	21
89	Integration of Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial Dysfunction in Non-alcoholic Fatty Liver Disease. Cell Systems, 2018, 6, 103-115.e7.	6.2	124
90	Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nature Medicine, 2018, 24, 304-312.	30.7	171

#	Article	IF	Citations
91	A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metabolism, 2018, 27, 1138-1155.e6.	16.2	58
92	Epigenome-wide association in adipose tissue from the METSIM cohort. Human Molecular Genetics, 2018, 27, 1830-1846.	2.9	38
93	IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233.e17.	28.9	142
94	Systems Genetics Approach to Biomarker Discovery: GPNMB and Heart Failure in Mice and Humans. G3: Genes, Genomes, Genetics, 2018, 8, 3499-3506.	1.8	14
95	Using the natural variation of mouse populations to understand host-gut microbiome interactions. Drug Discovery Today: Disease Models, 2018, 28, 61-71.	1.2	6
96	Mouse genome-wide association studies and systems genetics uncover the genetic architecture associated with hepatic pharmacokinetic and pharmacodynamic properties of a constrained ethyl antisense oligonucleotide targeting Malat1. PLoS Genetics, 2018, 14, e1007732.	3.5	7
97	Maternal High-Protein and Low-Protein Diets Perturb Hypothalamus and Liver Transcriptome and Metabolic Homeostasis in Adult Mouse Offspring. Frontiers in Genetics, 2018, 9, 642.	2.3	6
98	Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio, 2018, 9, .	4.1	70
99	Regulator of Calcineurin 1 helps coordinate wholeâ€body metabolism and thermogenesis. EMBO Reports, 2018, 19, .	4.5	30
100	Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature Microbiology, 2018, 3, 1461-1471.	13.3	310
101	Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biology of Sex Differences, 2018, 9, 46.	4.1	65
102	Sex differences in metabolism and cardiometabolic disorders. Current Opinion in Lipidology, 2018, 29, 404-410.	2.7	78
103	Microbial Transplantation With Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential. Circulation Research, 2018, 123, 1164-1176.	4.5	122
104	Genetic, dietary, and sex-specific regulation of hepatic ceramides and the relationship between hepatic ceramides and IR [S]. Journal of Lipid Research, 2018, 59, 1164-1174.	4.2	26
105	Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis. Circulation, 2018, 138, 1224-1235.	1.6	56
106	Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nature Medicine, 2018, 24, 1407-1417.	30.7	383
107	Transcription Factor <i>Zhx2</i> Deficiency Reduces Atherosclerosis and Promotes Macrophage Apoptosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2016-2027.	2.4	23
108	Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nature Communications, 2018, 9, 2292.	12.8	44

#	Article	IF	Citations
109	The Genetic Architecture of Dietâ€Induced Hepatic Fibrosis in Mice. Hepatology, 2018, 68, 2182-2196.	7.3	51
110	A multi-tissue full lifespan epigenetic clock for mice. Aging, 2018, 10, 2832-2854.	3.1	166
111	The Ca2+ transient as a feedback sensor controlling cardiomyocyte ionic conductances in mouse populations. ELife, 2018, 7, .	6.0	22
112	Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics, 2017, 18, 89.	2.8	40
113	The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. Journal of Lipid Research, 2017, 58, 481-493.	4.2	147
114	The State of Systems Genetics in 2017. Cell Systems, 2017, 4, 7-15.	6.2	29
115	Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. American Journal of Human Genetics, 2017, 100, 428-443.	6.2	141
116	Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biology, 2017, 18, 70.	8.8	245
117	Multi-omics approaches to disease. Genome Biology, 2017, 18, 83.	8.8	1,439
118	Functional Characterization of the <i>GUCY1A3</i> Coronary Artery Disease Risk Locus. Circulation, 2017, 136, 476-489.	1.6	84
119	Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. Cell Metabolism, 2017, 25, 248-261.	16.2	161
120	The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Reports, 2017, 19, 2451-2461.	6.4	194
121	A systems genetics approach identifiesTrp53inp2as a link between cardiomyocyte glucose utilization and hypertrophic response. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H728-H741.	3.2	12
122	A Suite of Tools for Biologists That Improve Accessibility and Visualization of Large Systems Genetics Datasets: Applications to the Hybrid Mouse Diversity Panel. Methods in Molecular Biology, 2017, 1488, 153-188.	0.9	5
123	Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circulation Research, 2017, 121, e53-e79.	4.5	69
124	Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e131-e157.	2.4	262
125	Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival. Nature Communications, 2017, 8, 16041.	12.8	113
126	<i>Trans</i> -ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the <i>ANGPTL8</i> HDL-C GWAS Locus. G3: Genes, Genomes, Genetics, 2017, 7, 3217-3227.	1.8	19

#	Article	IF	Citations
127	Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nature Genetics, 2017, 49, 1346-1353.	21.4	252
128	<i>Hamp1</i> mRNA and plasma hepcidin levels are influenced by sex and strain but do not predict tissue iron levels in inbred mice. American Journal of Physiology - Renal Physiology, 2017, 313, G511-G523.	3.4	8
129	Association between the gut microbiome and atherosclerosis. Nature Reviews Cardiology, 2017, 14, 699-700.	13.7	60
130	Transgenic tomatoes expressing the 6F peptide and ezetimibe prevent diet-induced increases of IFN- \hat{l}^2 and cholesterol 25-hydroxylase in jejunum. Journal of Lipid Research, 2017, 58, 1636-1647.	4.2	13
131	Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification. Cell Stem Cell, 2017, 20, 218-232.e5.	11.1	86
132	Genetic and hormonal control of hepatic steatosis in female and male mice. Journal of Lipid Research, 2017, 58, 178-187.	4.2	46
133	Systems Genetics Approach Identifies Gene Pathways and Adamts2 as Drivers of Isoproterenol-Induced Cardiac Hypertrophy and Cardiomyopathy in Mice. Cell Systems, 2017, 4, 121-128.e4.	6.2	39
134	Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. ELife, 2017, 6, .	6.0	142
135	Shared genetic regulatory networks for cardiovascular disease and type 2 diabetes in multiple populations of diverse ethnicities in the United States. PLoS Genetics, 2017, 13, e1007040.	3.5	82
136	Inaugural Charles River World Congress on Animal Models in Drug Discovery and Development. Journal of Translational Medicine, 2017, 15, .	4.4	1
137	Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model. PLoS Genetics, 2016, 12, e1006038.	3.5	70
138	Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans. G3: Genes, Genomes, Genetics, 2016, 6, 3361-3371.	1.8	15
139	Efficient and Accurate Multiple-Phenotype Regression Method for High Dimensional Data Considering Population Structure. Genetics, 2016, 204, 1379-1390.	2.9	26
140	Relationship of disease-associated gene expression to cardiac phenotype is buffered by genetic diversity and chromatin regulation. Physiological Genomics, 2016, 48, 601-615.	2.3	4
141	The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. Journal of Lipid Research, 2016, 57, 925-942.	4.2	143
142	Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function. Cardiovascular Research, 2016, 112, 702-713.	3.8	25
143	Genome-Wide Association Analysis Identifies Dcc as an Essential Factor in the Innervation of the Peripheral Vestibular System in Inbred Mice. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 417-431.	1.8	2
144	The Genetic Architecture of Noise-Induced Hearing Loss: Evidence for a Gene-by-Environment Interaction. G3: Genes, Genomes, Genetics, 2016, 6, 3219-3228.	1.8	24

#	Article	IF	Citations
145	Elevated Adiponectin Levels Suppress Perivascular and Aortic Inflammation and Prevent Angll-induced Advanced Abdominal Aortic Aneurysms. Scientific Reports, 2016, 6, 31414.	3.3	15
146	Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC Genomics, 2016, 17, 874.	2.8	106
147	CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature, 2016, 536, 86-90.	27.8	443
148	Discovering Single Nucleotide Polymorphisms Regulating Human Gene Expression Using Allele Specific Expression from RNA-seq Data. Genetics, 2016, 204, 1057-1064.	2.9	17
149	Skeletal muscle action of estrogen receptor \hat{l}_{\pm} is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Science Translational Medicine, 2016, 8, 334ra54.	12.4	174
150	Chromatin variation associated with liver metabolism is mediated by transposable elements. Epigenetics and Chromatin, 2016, 9, 28.	3.9	37
151	Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf. Journal of Biological Chemistry, 2016, 291, 15428-15446.	3.4	30
152	Cross-Tissue Regulatory Gene Networks in Coronary Artery Disease. Cell Systems, 2016, 2, 196-208.	6.2	120
153	Imputing Phenotypes for Genome-wide Association Studies. American Journal of Human Genetics, 2016, 99, 89-103.	6.2	40
154	Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes, 2016, 7, 313-322.	9.8	564
155	DNA Methylation Indicates Susceptibility to Isoproterenol-Induced Cardiac Pathology and Is Associated With Chromatin States. Circulation Research, 2016, 118, 786-797.	4.5	40
156	Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics, 2016, 48, 245-252.	21.4	1,618
157	Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 2016, 165, 111-124.	28.9	1,358
158	Trimethylamine Nâ€Oxide Promotes Vascular Inflammation Through Signaling of Mitogenâ€Activated Protein Kinase and Nuclear Factorâ€PB. Journal of the American Heart Association, 2016, 5, .	3.7	579
159	Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway. Journal of Lipid Research, 2016, 57, 246-257.	4.2	43
160	A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear. Hearing Research, 2016, 333, 266-274.	2.0	51
161	Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. Journal of Vascular Surgery, 2016, 64, 202-209.e6.	1,1	9
162	Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes. ELife, 2016, 5, .	6.0	35

#	Article	IF	Citations
163	Abstract 625: Targeting of Heparin Binding EGF-like Growth Factor (HBEGF) Suppresses Hyperlipidemia and Atherosclerosis in LDL Receptor Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
164	Cardiovascular disease genes come together. Atherosclerosis, 2015, 242, 630-631.	0.8	3
165	The Genetic Architecture of Hearing Impairment in Mice: Evidence for Frequency-Specific Genetic Determinants. G3: Genes, Genomes, Genetics, 2015, 5, 2329-2339.	1.8	16
166	High-Density Genotypes of Inbred Mouse Strains: Improved Power and Precision of Association Mapping. G3: Genes, Genomes, Genetics, 2015, 5, 2021-2026.	1.8	37
167	Genetics of common forms of heart failure. Current Opinion in Cardiology, 2015, 30, 222-227.	1.8	28
168	Regulation of NF- 19 B signaling by oxidized glycerophospholipid and IL- 12 induced miRs- 21 -3p and - 27 a-5p in human aortic endothelial cells. Journal of Lipid Research, 2015, 56, 38-50.	4.2	33
169	Unraveling the environmental and genetic interactions inÂatherosclerosis: Central role of the gut microbiota. Atherosclerosis, 2015, 241, 387-399.	0.8	67
170	Epigenome-Wide Association of Liver Methylation Patterns and Complex Metabolic Traits in Mice. Cell Metabolism, 2015, 21, 905-917.	16.2	98
171	Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell, 2015, 163, 1585-1595.	28.9	974
172	Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol. American Journal of Human Genetics, 2015, 97, 801-815.	6.2	49
173	Deletion of MLIP (Muscle-enriched A-type Lamin-interacting Protein) Leads to Cardiac Hyperactivation of Akt/Mammalian Target of Rapamycin (mTOR) and Impaired Cardiac Adaptation. Journal of Biological Chemistry, 2015, 290, 26699-26714.	3.4	25
174	Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. Journal of Lipid Research, 2015, 56, 22-37.	4.2	254
175	Combined QTL and Selective Sweep Mappings with Coding SNP Annotation and <i>cis </i> -eQTL Analysis Revealed <i>PARK2 </i> and <i>JAG2 </i> as New Candidate Genes for Adiposity Regulation. G3: Genes, Genomes, Genetics, 2015, 5, 517-529.	1.8	17
176	Estrogen Receptor (ER) \hat{l} ±-regulated Lipocalin 2 Expression in Adipose Tissue Links Obesity with Breast Cancer Progression. Journal of Biological Chemistry, 2015, 290, 5566-5581.	3.4	61
177	The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance. Cell Reports, 2015, 10, 326-338.	6.4	307
178	Genetic Architecture of Insulin Resistance in the Mouse. Cell Metabolism, 2015, 21, 334-347.	16.2	196
179	PON3 knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis. FASEB Journal, 2015, 29, 1185-1197.	0.5	38
180	Transmission of Atherosclerosis Susceptibility with Gut Microbial Transplantation. Journal of Biological Chemistry, 2015, 290, 5647-5660.	3.4	400

#	Article	IF	CITATIONS
181	Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces. Circulation Research, 2015, 117, e41-e53.	4.5	75
182	The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice. Stem Cell Reports, 2015, 5, 125-138.	4.8	21
183	Genome-Wide Association Study Identifies Nox3 as a Critical Gene for Susceptibility to Noise-Induced Hearing Loss. PLoS Genetics, 2015, 11, e1005094.	3.5	64
184	Future Translational Applications From the Contemporary Genomics Era. Circulation, 2015, 131, 1715-1736.	1.6	38
185	Mapping Genetic Contributions to Cardiac Pathology Induced by Beta-Adrenergic Stimulation in Mice. Circulation: Cardiovascular Genetics, 2015, 8, 40-49.	5.1	71
186	Genetic and environmental control of host-gut microbiota interactions. Genome Research, 2015, 25, 1558-1569.	5 . 5	288
187	Prediction of Causal Candidate Genes in Coronary Artery Disease Loci. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2207-2217.	2.4	101
188	ABCC6 deficiency is associated with activation of BMP signaling in liver and kidney. FEBS Open Bio, 2015, 5, 257-263.	2.3	9
189	Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. Journal of Experimental Medicine, 2015, 212, 2147-2163.	8.5	86
190	Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genetics, 2015, 11, e1005711.	3.5	124
191	The genetic architecture of NAFLD among inbred strains of mice. ELife, 2015, 4, e05607.	6.0	96
192	Microbiome/Metabolic Syndrome/Diabetes and CVD. FASEB Journal, 2015, 29, 222.3.	0.5	0
193	Abstract 15: Proteomic Analysis of HDL from Inbred Strains of Mice Implicates APOE in Reduced Cholesterol Efflux Capacity via the ABCA1 Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
194	Abstract 358: Targeting of Heparin Binding EGF-like Growth Factor (HB-EGF) Efficiently Inhibits Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
195	Abstract 529: High-dimensional Genetic Analysis of Lipoprotein Composition and Size in the Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
196	Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease. PLoS Genetics, 2014, 10, e1004502.	3.5	192
197	Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice. PLoS Genetics, 2014, 10, e1004022.	3.5	46
198	Genetic regulation of mouse liver metabolite levels. Molecular Systems Biology, 2014, 10, 730.	7.2	55

#	Article	IF	Citations
199	From Hairballs to an Understanding of Transendothelial Migration of Monocytes in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1809-1810.	2.4	1
200	Genome-Wide Association Study for Age-Related Hearing Loss (AHL) in the Mouse: A Meta-Analysis. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 335-352.	1.8	31
201	Systems genetics approaches to understand complex traits. Nature Reviews Genetics, 2014, 15, 34-48.	16.3	529
202	Reducing Macrophage Proteoglycan Sulfation Increases Atherosclerosis and Obesity through Enhanced Type I Interferon Signaling. Cell Metabolism, 2014, 20, 813-826.	16.2	65
203	Î ³ -Butyrobetaine Is a Proatherogenic Intermediate in Gut Microbial Metabolism of L-Carnitine to TMAO. Cell Metabolism, 2014, 20, 799-812.	16.2	416
204	Comparative Genome-Wide Association Studies in Mice and Humans for Trimethylamine $\langle i \rangle N \langle i \rangle$ -Oxide, a Proatherogenic Metabolite of Choline and $\langle scp \rangle \langle scp \rangle$ -Carnitine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1307-1313.	2.4	119
205	Transgenic Expression of Dominant-Active IDOL in Liver Causes Diet-Induced Hypercholesterolemia and Atherosclerosis in Mice. Circulation Research, 2014, 115, 442-449.	4.5	21
206	Open Chromatin Profiling in Mice Livers Reveals Unique Chromatin Variations Induced by High Fat Diet. Journal of Biological Chemistry, 2014, 289, 23557-23567.	3.4	67
207	Individual diet has sex-dependent effects on vertebrate gut microbiota. Nature Communications, 2014, 5, 4500.	12.8	464
208	Allele-specific expression and eQTL analysis in mouse adipose tissue. BMC Genomics, 2014, 15, 471.	2.8	57
209	Genetic network identifies novel pathways contributing to atherosclerosis susceptibility in the innominate artery. BMC Medical Genomics, 2014, 7, 51.	1.5	8
210	Intergenerational genomic DNA methylation patterns in mouse hybrid strains. Genome Biology, 2014, 15, R68.	9.6	30
211	HDL inhibits the effects of oxidized phospholipids on endothelial cell gene expression via multiple mechanisms. Journal of Lipid Research, 2014, 55, 1678-1692.	4.2	6
212	Lipin-1 and lipin-3 together determine adiposity in vivo. Molecular Metabolism, 2014, 3, 145-154.	6.5	48
213	Genetic modulation of diabetic nephropathy among mouse strains with Ins2 <i>Akita</i> Physiological Reports, 2014, 2, e12208.	1.7	7
214	Abstract 253: NOTCH1 Protects Against Atherosclerosis by Repressing Endothelial Activation and Recruitment of Inflammatory Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
215	Genome-wide association mapping of blood cell traits in mice. Mammalian Genome, 2013, 24, 105-118.	2.2	34
216	Testing the Iron Hypothesis in a Mouse Model of Atherosclerosis. Cell Reports, 2013, 5, 1436-1442.	6.4	44

#	Article	IF	CITATIONS
217	Hyodeoxycholic acid improves HDL function and inhibits atherosclerotic lesion formation in LDLRâ€knockout mice. FASEB Journal, 2013, 27, 3805-3817.	0.5	41
218	Trimethylamine-N-Oxide, a Metabolite Associated with Atherosclerosis, Exhibits Complex Genetic and Dietary Regulation. Cell Metabolism, 2013, 17, 49-60.	16.2	794
219	Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice. Cell Metabolism, 2013, 17, 141-152.	16.2	464
220	Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 2013, 19, 576-585.	30.7	3,355
221	Gene Expression Analyses of Mouse Aortic Endothelium in Response to Atherogenic Stimuli. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2509-2517.	2.4	29
222	Analysis of Allele-Specific Expression in Mouse Liver by RNA-Seq: A Comparison With <i>Cis</i> ldentified Using Genetic Linkage. Genetics, 2013, 195, 1157-1166.	2.9	43
223	Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits. Human Molecular Genetics, 2013, 22, 3023-3037.	2.9	72
224	Maximal information component analysis: a novel non-linear network analysis method. Frontiers in Genetics, 2013, 4, 28.	2.3	22
225	The Systems Genetics Resource: A Web Application to Mine Global Data for Complex Disease Traits. Frontiers in Genetics, 2013, 4, 84.	2.3	12
226	Association of TERC and OBFC1 Haplotypes with Mean Leukocyte Telomere Length and Risk for Coronary Heart Disease. PLoS ONE, 2013, 8, e83122.	2.5	42
227	Systems Genetic Analysis of Osteoblast-Lineage Cells. PLoS Genetics, 2012, 8, e1003150.	3.5	48
228	Life After GWAS. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 169-169.	2.4	7
229	Understanding the Sexome: Measuring and Reporting Sex Differences in Gene Systems. Endocrinology, 2012, 153, 2551-2555.	2.8	92
230	Systems-based approaches to cardiovascular disease. Nature Reviews Cardiology, 2012, 9, 172-184.	13.7	74
231	Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mammalian Genome, 2012, 23, 680-692.	2.2	134
232	Unraveling Inflammatory Responses using Systems Genetics and Gene-Environment Interactions in Macrophages. Cell, 2012, 151, 658-670.	28.9	134
233	Increasing Association Mapping Power and Resolution in Mouse Genetic Studies Through the Use of Meta-Analysis for Structured Populations. Genetics, 2012, 191, 959-967.	2.9	14
234	Systems genetics of susceptibility to obesity-induced diabetes in mice. Physiological Genomics, 2012, 44, 1-13.	2.3	38

#	Article	IF	Citations
235	Genetics of atherosclerosis. Trends in Genetics, 2012, 28, 267-275.	6.7	97
236	Conducting the metabolic syndrome orchestra. Nature Genetics, 2011, 43, 506-508.	21.4	22
237	Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472, 57-63.	27.8	4,238
238	Gene networks associated with conditional fear in mice identified using a systems genetics approach. BMC Systems Biology, 2011, 5, 43.	3.0	71
239	Network for Activation of Human Endothelial Cells by Oxidized Phospholipids. Circulation Research, 2011, 109, e27-41.	4.5	117
240	Paraoxonase-2 Modulates Stress Response of Endothelial Cells to Oxidized Phospholipids and a Bacterial Quorum–Sensing Molecule. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2624-2633.	2.4	35
241	Comparative Analysis of Proteome and Transcriptome Variation in Mouse. PLoS Genetics, 2011, 7, e1001393.	3.5	548
242	NF-E2–Related Factor 2 Promotes Atherosclerosis by Effects on Plasma Lipoproteins and Cholesterol Transport That Overshadow Antioxidant Protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 58-66.	2.4	146
243	Mouse Genome-Wide Association and Systems Genetics Identify Asxl2 As a Regulator of Bone Mineral Density and Osteoclastogenesis. PLoS Genetics, 2011, 7, e1002038.	3.5	108
244	Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. Journal of Clinical Investigation, 2011, 121, 2693-2708.	8.2	464
245	Systems Genetics Analysis of Gene-by-Environment Interactions in Human Cells. American Journal of Human Genetics, 2010, 86, 399-410.	6.2	103
246	Expression Quantitative Trait Loci: Replication, Tissue- and Sex-Specificity in Mice. Genetics, 2010, 185, 1059-1068.	2.9	97
247	A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Research, 2010, 20, 281-290.	5.5	299
248	Upstream transcription factor 1 influences plasma lipid and metabolic traits in mice. Human Molecular Genetics, 2010, 19, 597-608.	2.9	30
249	Quantitative Trait Locus Mapping and Identification of Zhx2 as a Novel Regulator of Plasma Lipid Metabolism. Circulation: Cardiovascular Genetics, 2010, 3, 60-67.	5.1	36
250	Cardiovascular Networks. Circulation, 2010, 121, 157-170.	1.6	123
251	Arterial colony stimulating factor-1 influences atherosclerotic lesions by regulating monocyte migration and apoptosis. Journal of Lipid Research, 2010, 51, 1962-1970.	4.2	62
252	Impaired Development of Atherosclerosis in <i>Abcg1</i> ^{â^'/â^'} <i>Apoe</i> ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1174-1180.	2.4	53

#	Article	IF	Citations
253	Identification and validation of genes affecting aortic lesions in mice. Journal of Clinical Investigation, 2010, 120, 2414-2422.	8.2	49
254	Inhibition of bone morphogenetic protein protects against atherosclerosis and vascular calcification. FASEB Journal, 2010, 24, 116.1.	0.5	0
255	CHAC1/MGC4504 Is a Novel Proapoptotic Component of the Unfolded Protein Response, Downstream of the ATF4-ATF3-CHOP Cascade. Journal of Immunology, 2009, 182, 466-476.	0.8	255
256	Elucidating the Role of Gonadal Hormones in Sexually Dimorphic Gene Coexpression Networks. Endocrinology, 2009, 150, 1235-1249.	2.8	224
257	Genetic Regulation of Atherosclerotic Plaque Size and Morphology in the Innominate Artery of Hyperlipidemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 348-355.	2.4	16
258	Disruption of the Aortic Elastic Lamina and Medial Calcification Share Genetic Determinants in Mice. Circulation: Cardiovascular Genetics, 2009, 2, 573-582.	5.1	15
259	A systems-based framework for understanding complex metabolic and cardiovascular disorders. Journal of Lipid Research, 2009, 50, S358-S363.	4.2	11
260	Genome-wide screening for genetic loci associated with noise-induced hearing loss. Mammalian Genome, 2009, 20, 207-213.	2.2	31
261	Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nature Genetics, 2009, 41, 415-423.	21.4	257
262	Systems biology asks new questions about sex differences. Trends in Endocrinology and Metabolism, 2009, 20, 471-476.	7.1	38
263	The roles of PON1 and PON2 in cardiovascular disease and innate immunity. Current Opinion in Lipidology, 2009, 20, 288-292.	2.7	74
264	Human PON2 S311C polymorphism impairs airway epithelia 3OC12â€HSL inactivation and alters PON2 glycosylation. FASEB Journal, 2009, 23, LB271.	0.5	0
265	Variations in DNA elucidate molecular networks that cause disease. Nature, 2008, 452, 429-435.	27.8	840
266	A treasure trove for lipoprotein biology. Nature Genetics, 2008, 40, 129-130.	21.4	79
267	Metabolic syndrome: from epidemiology to systems biology. Nature Reviews Genetics, 2008, 9, 819-830.	16.3	289
268	Using genetic markers to orient the edges in quantitative trait networks: The NEO software. BMC Systems Biology, 2008, 2, 34.	3.0	138
269	Relationship of Paraoxonase 1 (PON1) Gene Polymorphisms and Functional Activity With Systemic Oxidative Stress and Cardiovascular Risk. JAMA - Journal of the American Medical Association, 2008, 299, 1265.	7.4	463
270	Apolipoprotein All Is a Regulator of Very Low Density Lipoprotein Metabolism and Insulin Resistance. Journal of Biological Chemistry, 2008, 283, 11633-11644.	3.4	72

#	Article	IF	CITATIONS
271	Mapping the Genetic Architecture of Gene Expression in Human Liver. PLoS Biology, 2008, 6, e107.	5.6	872
272	A Novel Tissue Factor Resistance Locus on Mouse Chromosome 11 Confers Protection from Thrombosis through Reduced Activity of Factor XI. Blood, 2008, 112, 393-393.	1.4	1
273	Networkâ€based identification of critical transcription regulators in the metabolic syndrome in mice. FASEB Journal, 2008, 22, 797.1.	0.5	0
274	Identification of Abcc6 as the major causal gene for dystrophic cardiac calcification in mice through integrative genomics. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4530-4535.	7.1	122
275	Network-centered view of coronary artery disease. Expert Review of Cardiovascular Therapy, 2007, 5, 1095-1103.	1.5	3
276	The Problem of Passenger Genes in Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2100-2103.	2.4	57
277	Decreased Obesity and Atherosclerosis in Human Paraoxonase 3 Transgenic Mice. Circulation Research, 2007, 100, 1200-1207.	4.5	95
278	Heme Oxygenase-1 Expression in Macrophages Plays a Beneficial Role in Atherosclerosis. Circulation Research, 2007, 100, 1703-1711.	4.5	179
279	Granulocyte Macrophage Colony-Stimulating Factor Regulates Dendritic Cell Content of Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 621-627.	2.4	80
280	Metabolic Syndrome as a Modifier of Atherosclerosis in Murine Models. Current Drug Targets, 2007, 8, 1215-1220.	2.1	0
281	Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells. Genome Biology, 2007, 8, R149.	9.6	107
282	Mapping, Genetic Isolation, and Characterization of Genetic Loci That Determine Resistance to Atherosclerosis in C3H Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2671-2676.	2.4	38
283	Identification of Pathways for Atherosclerosis in Mice. Circulation Research, 2007, 101, e11-30.	4.5	108
284	Dosage compensation is less effective in birds than in mammals. Journal of Biology, 2007, 6, 2.	2.7	304
285	Ligand activation of LXRÎ 2 reverses atherosclerosis and cellular cholesterol overload in mice lacking LXRÎ 2 and apoE. Journal of Clinical Investigation, 2007, 117, 2337-2346.	8.2	244
286	Paraoxonase-2 Deficiency Aggravates Atherosclerosis in Mice Despite Lower Apolipoprotein-B-containing Lipoproteins. Journal of Biological Chemistry, 2006, 281, 29491-29500.	3.4	149
287	Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mammalian Genome, 2006, 17, 466-479.	2.2	72
288	Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Research, 2006, 16, 995-1004.	5.5	785

#	Article	IF	Citations
289	Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight. PLoS Genetics, 2006, 2, e130.	3.5	419
290	Genetic and Genomic Analysis of a Fat Mass Trait with Complex Inheritance Reveals Marked Sex Specificity. PLoS Genetics, 2006, 2, e15.	3.5	161
291	FXR Deficiency Causes Reduced Atherosclerosis in Ldlr â^'/â^' Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2316-2321.	2.4	153
292	Quantitative Trait Locus Analysis of Atherosclerosis in an Intercross Between C57BL/6 and C3H Mice Carrying the Mutant Apolipoprotein E Gene. Genetics, 2006, 172, 1799-1807.	2.9	45
293	Complex Inheritance of the 5-Lipoxygenase Locus Influencing Atherosclerosis in Mice. Genetics, 2006, 173, 943-951.	2.9	36
294	The Unfolded Protein Response Is an Important Regulator of Inflammatory Genes in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2490-2496.	2.4	320
295	Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12741-12746.	7.1	303
296	Characterization of 5LO transgenic mouse model for atherosclerosis, adipocity, and diabetes related traits. FASEB Journal, 2006, 20, A485.	0.5	0
297	Effects of 5â€lipoxygenase deficiency on adiposity, adrenal and beta cell functions, and bone density. FASEB Journal, 2006, 20, .	0.5	0
298	An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics, 2005, 37, 710-717.	21.4	967
299	Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nature Genetics, 2005, 37, 1224-1233.	21.4	210
300	Loss of G2A promotes macrophage accumulation in atherosclerotic lesions of low density lipoprotein receptor-deficient mice. Journal of Lipid Research, 2005, 46, 1405-1415.	4.2	38
301	Cis-acting expression quantitative trait loci in mice. Genome Research, 2005, 15, 681-691.	5.5	246
302	Genomic analysis of metabolic pathway gene expression in mice. Genome Biology, 2005, 6, R59.	9.6	70
303	Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight. PLoS Genetics, 2005, preprint, e130.	3.5	1
304	Genetic Basis of Atherosclerosis: Part I. Circulation, 2004, 110, 1868-1873.	1.6	166
305	Genetic Basis of Atherosclerosis: Part II. Circulation, 2004, 110, 2066-2071.	1.6	74
306	Thematic review series: The Pathogenesis of Atherosclerosis. Toward a biological network for atherosclerosis. Journal of Lipid Research, 2004, 45, 1793-1805.	4.2	41

#	Article	IF	CITATIONS
307	Hyplip2 , a New Gene for Combined Hyperlipidemia and Increased Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1928-1934.	2.4	26
308	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	21.4	1,034
309	Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nature Genetics, 2004, 36, 371-376.	21.4	295
310	GENETICS OF ATHEROSCLEROSIS. Annual Review of Genomics and Human Genetics, 2004, 5, 189-218.	6.2	265
311	Arachidonate 5-Lipoxygenase Promoter Genotype, Dietary Arachidonic Acid, and Atherosclerosis. New England Journal of Medicine, 2004, 350, 29-37.	27.0	571
312	Thematic review series: The Pathogenesis of Atherosclerosis The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. Journal of Lipid Research, 2004, 45, 993-1007.	4.2	585
313	Genetic Factors in Cardiovascular Disease. Trends in Cardiovascular Medicine, 2003, 13, 309-316.	4.9	31
314	Genetic loci for diet-induced atherosclerotic lesions and plasma lipids in mice. Mammalian Genome, 2003, 14, 464-471.	2.2	61
315	Genetics of gene expression surveyed in maize, mouse and man. Nature, 2003, 422, 297-302.	27.8	1,401
316	Genetic Backgrounds but Not Sizes of Atherosclerotic Lesions Determine Medial Destruction in the Aortic Root of Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1901-1906.	2.4	30
317	Using Mice to Dissect Genetic Factors in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1501-1509.	2.4	48
318	Locus for Elevated Apolipoprotein B Levels on Chromosome 1p31 in Families With Familial Combined Hyperlipidemia. Circulation Research, 2002, 90, 926-931.	4.5	46
319	The allelic structure of common disease. Human Molecular Genetics, 2002, 11, 2455-2461.	2.9	80
320	Atherosclerosis in C3H/HeJ Mice Reconstituted With Apolipoprotein E-Null Bone Marrow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 650-655.	2.4	26
321	Identification of 5-Lipoxygenase as a Major Gene Contributing to Atherosclerosis Susceptibility in Mice. Circulation Research, 2002, 91, 120-126.	4.5	387
322	Decreased Atherosclerotic Lesion Formation in Human Serum Paraoxonase Transgenic Mice. Circulation, 2002, 106, 484-490.	1.6	412
323	Understanding atherosclerosis through mouse genetics. Current Opinion in Lipidology, 2002, 13, 181-189.	2.7	11
324	Heme Oxygenase and Atherosclerosis. , 2002, , 269-278.		2

#	Article	IF	CITATIONS
325	CHD and Atherosclerosis: Human Epidemiological Studies and Transgenic Mouse Models. , 2002, , 93-123.		12
326	Genetic Locus in Mice That Blocks Development of Atherosclerosis Despite Extreme Hyperlipidemia. Circulation Research, 2001, 89, 125-130.	4.5	83
327	Human Paraoxonase-3 Is an HDL-Associated Enzyme With Biological Activity Similar to Paraoxonase-1 Protein but Is Not Regulated by Oxidized Lipids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 542-547.	2.4	319
328	New <i>Dyscalc</i> loci for myocardial cell necrosis and calcification (dystrophic cardiac calcinosis) in mice. Physiological Genomics, 2001, 6, 137-144.	2.3	41
329	Increased atherosclerosis in myeloperoxidase-deficient mice. Journal of Clinical Investigation, 2001, 107, 419-430.	8.2	292
330	Fine mapping of Hyplip1 and the human homolog, a potential locus for FCHL. Mammalian Genome, 2001, 12, 238-245.	2.2	17
331	Genetic loci influencing natural variations in femoral bone morphometry in mice. Journal of Orthopaedic Research, 2001, 19, 511-517.	2.3	27
332	Genome Scan for Blood Pressure in Dutch Dyslipidemic Families Reveals Linkage to a Locus on Chromosome 4p. Hypertension, 2001, 38, 773-778.	2.7	116
333	Atherosclerosis. Nature, 2000, 407, 233-241.	27.8	4,551
334	Genetics of atherosclerosis: The search for genes acting at the level of the vessel wall. Current Atherosclerosis Reports, 2000, 2, 380-389.	4.8	9
334	Genetics of atherosclerosis: The search for genes acting at the level of the vessel wall. Current Atherosclerosis Reports, 2000, 2, 380-389. Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model. Circulation Research, 2000, 86, 1078-1084.	4.8	9
	Atherosclerosis Reports, 2000, 2, 380-389. Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model. Circulation		
335	Atherosclerosis Reports, 2000, 2, 380-389. Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model. Circulation Research, 2000, 86, 1078-1084. Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein	4.5	138
335 336	Atherosclerosis Reports, 2000, 2, 380-389. Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model. Circulation Research, 2000, 86, 1078-1084. Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis. Journal of Biological Chemistry, 2000, 275, 17527-17535. Endothelial Responses to Oxidized Lipoproteins Determine Genetic Susceptibility to Atherosclerosis in	4.5 3.4	138 371
335 336 337	Atherosclerosis Reports, 2000, 2, 380-389. Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model. Circulation Research, 2000, 86, 1078-1084. Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis. Journal of Biological Chemistry, 2000, 275, 17527-17535. Endothelial Responses to Oxidized Lipoproteins Determine Genetic Susceptibility to Atherosclerosis in Mice. Circulation, 2000, 102, 75-81. Blocking Very Late Antigen-4 Integrin Decreases Leukocyte Entry and Fatty Streak Formation in Mice	4.5 3.4 1.6	138 371 196
335 336 337	Atherosclerosis Reports, 2000, 2, 380-389. Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model. Circulation Research, 2000, 86, 1078-1084. Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis. Journal of Biological Chemistry, 2000, 275, 17527-17535. Endothelial Responses to Oxidized Lipoproteins Determine Genetic Susceptibility to Atherosclerosis in Mice. Circulation, 2000, 102, 75-81. Blocking Very Late Antigen-4 Integrin Decreases Leukocyte Entry and Fatty Streak Formation in Mice Fed an Atherogenic Diet. Circulation Research, 1999, 84, 345-351. Role of Group II Secretory Phospholipase A ₂ in Atherosclerosis. Arteriosclerosis,	4.5 3.4 1.6 4.5	138 371 196 93
335 336 337 338	Atherosclerosis Reports, 2000, 2, 380-389. Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model. Circulation Research, 2000, 86, 1078-1084. Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis. Journal of Biological Chemistry, 2000, 275, 17527-17535. Endothelial Responses to Oxidized Lipoproteins Determine Genetic Susceptibility to Atherosclerosis in Mice. Circulation, 2000, 102, 75-81. Blocking Very Late Antigen-4 Integrin Decreases Leukocyte Entry and Fatty Streak Formation in Mice Fed an Atherogenic Diet. Circulation Research, 1999, 84, 345-351. Role of Group II Secretory Phospholipase A ₂ in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1284-1290. Paradoxical effect on atherosclerosis of hormone-sensitive lipase overexpression in macrophages.	4.5 3.4 1.6 4.5	138 371 196 93 236

#	Article	IF	Citations
343	Localization of ubiquitin gene family members to mouse Chromosomes 5, 11, and 18. Mammalian Genome, 1997, 8, 789-790.	2.2	1
344	Association Between Serum Amyloid A Proteins and Coronary Artery Disease. Circulation, 1997, 96, 2914-2919.	1.6	123
345	The Yin and Yang of Oxidation in the Development of the Fatty Streak. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 831-842.	2.4	553
346	Atherosclerosis: Basic Mechanisms. Circulation, 1995, 91, 2488-2496.	1.6	1,387
347	Genetic contributions to quantitative lipoprotein traits associated with coronary artery disease: Analysis of a large pedigree from the Bogalusa heart study. American Journal of Medical Genetics Part A, 1993, 47, 875-883.	2.4	25
348	Mapping of multiple mouse loci related to the farnesyl pyrophosphate synthetase gene. Mammalian Genome, 1993, 4, 211-219.	2.2	6
349	Molecular basis of the little mouse phenotype and Implications for cell type-specific growth. Nature, 1993, 364, 208-213.	27.8	477
350	Oxidized lipoproteins influence gene expression by causing oxidative stress and activating the transcription factor NF-κB. Biochemical Society Transactions, 1993, 21, 651-655.	3.4	35
351	Mouse Chromosome 8. Mammalian Genome, 1992, 3, S121-S135.	2.2	3
352	The apolipoprotein(a) gene resides on human chromosome 6q26?27, in close proximity to the homologous gene for plasminogen. Human Genetics, 1988, 79, 352-6.	3.8	116
353	Human apolipoprotein B: Chromosomal mapping and DNA polymorphisms of hepatic and intestinal species. Somatic Cell and Molecular Genetics, 1986, 12, 245-254.	0.7	25
354	A gene-controlling response of bone marrow progenitor cells to granulocyte-macrophage colony stimulating factors. Journal of Cellular Physiology, 1985, 124, 293-298.	4.1	0
355	Human apolipoprotein B: partial amino acid sequence. FEBS Letters, 1984, 170, 105-108.	2.8	29
356	Translation of mRNA for human granulocyte–macrophage colony stimulating factor. Nature, 1982, 298, 75-77.	27.8	21