Martin Hofmann-Apitius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1922578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GuiltyTargets: Prioritization of Novel Therapeutic Targets With Network Representation Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 491-500.	3.0	9
2	STonKGs: a sophisticated transformer trained on biomedical text and knowledge graphs. Bioinformatics, 2022, 38, 1648-1656.	4.1	11
3	A hybrid approach unveils drug repurposing candidates targeting an Alzheimer pathophysiology mechanism. Patterns, 2022, 3, 100433.	5.9	13
4	Deep Learning-based detection of psychiatric attributes from German mental health records. International Journal of Medical Informatics, 2022, 161, 104724.	3.3	4
5	On the influence of several factors on pathway enrichment analysis. Briefings in Bioinformatics, 2022, 23, .	6.5	17
6	Comparison and aggregation of event sequences across ten cohorts to describe the consensus biomarker evolution in Alzheimer's disease. Alzheimer's Research and Therapy, 2022, 14, 55.	6.2	2
7	Integrative data semantics through a model-enabled data stewardship. Bioinformatics, 2022, 38, 3850-3852.	4.1	4
8	Elucidating gene expression patterns across multiple biological contexts through a large-scale investigation of transcriptomic datasets. BMC Bioinformatics, 2022, 23, .	2.6	3
9	The COVID-19 Ontology. Bioinformatics, 2021, 36, 5703-5705.	4.1	27
10	Identifying multimodal signatures underlying the somatic comorbidity of psychosis: the COMMITMENT roadmap. Molecular Psychiatry, 2021, 26, 722-724.	7.9	7
11	COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology. Bioinformatics, 2021, 37, 1332-1334.	4.1	70
12	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	0
13	ANMerge: A Comprehensive and Accessible Alzheimer's Disease Patient-Level Dataset. Journal of Alzheimer's Disease, 2021, 79, 423-431.	2.6	18
14	A Systems Biology Approach for Hypothesizing the Effect of Genetic Variants on Neuroimaging Features in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 80, 831-840.	2.6	2
15	Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Frontiers in Neuroinformatics, 2021, 15, 630172.	2.5	20
16	Linking COVID-19 and Heme-Driven Pathophysiologies: A Combined Computational–Experimental Approach. Biomolecules, 2021, 11, 644.	4.0	16
17	CLEP: a hybrid data- and knowledge-driven framework for generating patient representations. Bioinformatics, 2021, 37, 3311-3318.	4.1	6
18	A method for the rational selection of drug repurposing candidates from multimodal knowledge harmonization. Scientific Reports, 2021, 11, 11049.	3.3	12

#	Article	IF	CITATIONS
19	Virtual connectomic datasets in Alzheimer's Disease and aging using whole-brain network dynamics modelling. ENeuro, 2021, 8, ENEURO.0475-20.2021.	1.9	14
20	DecoPath: a web application for decoding pathway enrichment analysis. NAR Genomics and Bioinformatics, 2021, 3, lqab087.	3.2	3
21	Towards a global investigation of transcriptomic signatures through co-expression networks and pathway knowledge for the identification of disease mechanisms. Nucleic Acids Research, 2021, 49, 7939-7953.	14.5	3
22	Using predictive machine learning models for drug response simulation by calibrating patient-specific pathway signatures. Npj Systems Biology and Applications, 2021, 7, 40.	3.0	4
23	MultiPaths: a Python framework for analyzing multi-layer biological networks using diffusion algorithms. Bioinformatics, 2021, 37, 137-139.	4.1	3
24	Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders. Scientific Reports, 2020, 10, 10971.	3.3	7
25	Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia - lessons for translation into clinical practice. EPMA Journal, 2020, 11, 367-376.	6.1	34
26	Data-Driven Modeling of Knowledge Assemblies in Understanding Comorbidity Between Type 2 Diabetes Mellitus and Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 78, 87-95.	2.6	10
27	Clustering of Alzheimer's and Parkinson's disease based on genetic burden of shared molecular mechanisms. Scientific Reports, 2020, 10, 19097.	3.3	11
28	PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures. BMC Bioinformatics, 2020, 21, 231.	2.6	11
29	Variational Autoencoder Modular Bayesian Networks for Simulation of Heterogeneous Clinical Study Data. Frontiers in Big Data, 2020, 3, 16.	2.9	12
30	Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current Opinion in Neurology, 2020, 33, 249-254.	3.6	15
31	A Computational Approach for Mapping Heme Biology in the Context of Hemolytic Disorders. Frontiers in Bioengineering and Biotechnology, 2020, 8, 74.	4.1	16
32	Drug2ways: Reasoning over causal paths in biological networks for drug discovery. PLoS Computational Biology, 2020, 16, e1008464.	3.2	18
33	Quantifying mechanisms in neurodegenerative diseases (NDDs) using candidate mechanism perturbation amplitude (CMPA) algorithm. BMC Bioinformatics, 2019, 20, 494.	2.6	3
34	Contribution of syndecans to cellular uptake and fibrillation of α-synuclein and tau. Scientific Reports, 2019, 9, 16543.	3.3	44
35	PathMe: merging and exploring mechanistic pathway knowledge. BMC Bioinformatics, 2019, 20, 243.	2.6	42
36	Re-curation and rational enrichment of knowledge graphs in Biological Expression Language. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	20

#	Article	IF	CITATIONS
37	Contribution of syndecans to cellular internalization and fibrillation of amyloid-β(1–42). Scientific Reports, 2019, 9, 1393.	3.3	33
38	The Impact of Pathway Database Choice on Statistical Enrichment Analysis and Predictive Modeling. Frontiers in Genetics, 2019, 10, 1203.	2.3	78
39	Challenges of Integrative Disease Modeling in Alzheimer's Disease. Frontiers in Molecular Biosciences, 2019, 6, 158.	3.5	13
40	Converting Alzheimer's Disease Map into a Heavyweight Ontology: A Formal Network to Integrate Data. Lecture Notes in Computer Science, 2019, , 207-215.	1.3	4
41	Multi-omic approach decodes paradoxes of the triple-negative breast cancer: lessons for predictive, preventive and personalised medicine. Amino Acids, 2018, 50, 383-395.	2.7	34
42	BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	17
43	ComPath: an ecosystem for exploring, analyzing, and curating mappings across pathway databases. Npj Systems Biology and Applications, 2018, 4, 3.	3.0	43
44	Using Multi-Scale Genetic, Neuroimaging and Clinical Data for Predicting Alzheimer's Disease and Reconstruction of Relevant Biological Mechanisms. Scientific Reports, 2018, 8, 11173.	3.3	59
45	A systematic approach for identifying shared mechanisms in epilepsy and its comorbidities. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	7
46	Novel approaches to develop community-built biological network models for potential drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 1-9.	5.0	13
47	Knowledgeâ€driven computational modeling in Alzheimer's disease research: Current state and future trends. Alzheimer's and Dementia, 2017, 13, 1292-1302.	0.8	11
48	A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Research, 2017, 45, 9290-9301.	14.5	159
49	Big data and data repurposing - using existing data to answer new questions in vascular dementia research. BMC Neurology, 2017, 17, 72.	1.8	24
50	Towards a 21st-century roadmap for biomedical research and drug discovery: consensus report and recommendations. Drug Discovery Today, 2017, 22, 327-339.	6.4	64
51	Analytical Strategy to Prioritize Alzheimer's Disease Candidate Genes in Gene Regulatory Networks Using Public Expression Data. Journal of Alzheimer's Disease, 2017, 59, 1237-1254.	2.6	23
52	Of Mice and Men: Comparative Analysis of Neuro-Inflammatory Mechanisms in Human and Mouse Using Cause-and-Effect Models. Journal of Alzheimer's Disease, 2017, 59, 1045-1055.	2.6	18
53	Comorbidity Analysis between Alzheimer's Disease and Type 2 Diabetes Mellitus (T2DM) Based on Shared Pathways and the Role of T2DM Drugs. Journal of Alzheimer's Disease, 2017, 60, 721-731.	2.6	55
54	Using Drugs as Molecular Probes: AÂComputational Chemical Biology Approach in Neurodegenerative Diseases. Journal of Alzheimer's Disease, 2017, 56, 677-686.	2.6	14

#	Article	IF	CITATIONS
55	Neuroimaging Feature Terminology: A Controlled Terminology for the Annotation of Brain Imaging Features. Journal of Alzheimer's Disease, 2017, 59, 1153-1169.	2.6	11
56	Multimodal mechanistic signatures for neurodegenerative diseases (NeuroMMSig): a web server for mechanism enrichment. Bioinformatics, 2017, 33, 3679-3681.	4.1	39
57	Towards a Pathway Inventory of the Human Brain for Modeling Disease Mechanisms Underlying Neurodegeneration. Journal of Alzheimer's Disease, 2016, 52, 1343-1360.	2.6	14
58	NeuroRDF: semantic integration of highly curated data to prioritize biomarker candidates in Alzheimer's disease. Journal of Biomedical Semantics, 2016, 7, 45.	1.6	13
59	Reasoning over genetic variance information in cause-and-effect models of neurodegenerative diseases. Briefings in Bioinformatics, 2016, 17, 505-516.	6.5	10
60	Construction of biological networks from unstructured information based on a semi-automated curation workflow. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav057.	3.0	33
61	Exploring novel mechanistic insights in Alzheimer's disease by assessing reliability of protein interactions. Scientific Reports, 2015, 5, 13634.	3.3	9
62	<i>NeuroTransDB</i> : highly curated and structured transcriptomic metadata for neurodegenerative diseases. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav099.	3.0	8
63	PDON: Parkinson's disease ontology for representation and modeling of the Parkinson's disease knowledge domain. Theoretical Biology and Medical Modelling, 2015, 12, 20.	2.1	29
64	Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders. International Journal of Molecular Sciences, 2015, 16, 29179-29206.	4.1	47
65	Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis. Journal of Immunology Research, 2015, 2015, 1-10.	2.2	11
66	Knowledge Retrieval from PubMed Abstracts and Electronic Medical Records with the Multiple Sclerosis Ontology. PLoS ONE, 2015, 10, e0116718.	2.5	26
67	Boosting translational research on Alzheimer's disease in Europe: The Innovative Medicine Initiative AD research platform. Alzheimer's and Dementia, 2015, 11, 1121-1122.	0.8	15
68	Towards the taxonomy of human disease. Nature Reviews Drug Discovery, 2015, 14, 75-76.	46.4	46
69	Computable causeâ€andâ€effect models of healthy and Alzheimer's disease states and their mechanistic differential analysis. Alzheimer's and Dementia, 2015, 11, 1329-1339.	0.8	46
70	Systems approach for the selection of micro-RNAs as therapeutic biomarkers of anti-EGFR monoclonal antibody treatment in colorectal cancer. Scientific Reports, 2015, 5, 8013.	3.3	6
71	Identification of gene co-expression clusters in liver tissues from multiple porcine populations with high and low backfat androstenone phenotype. BMC Genetics, 2015, 16, 21.	2.7	5
72	Is dementia research ready for big data approaches?. BMC Medicine, 2015, 13, 145.	5.5	11

#	Article	IF	CITATIONS
73	Linking hypothetical knowledge patterns to disease molecular signatures for biomarker discovery in Alzheimer's disease. Genome Medicine, 2014, 6, 97.	8.2	6
74	Text mining for systems biology. Drug Discovery Today, 2014, 19, 140-144.	6.4	31
75	CSEO $\hat{a} \in \hat{a}$ the Cigarette Smoke Exposure Ontology. Journal of Biomedical Semantics, 2014, 5, 31.	1.6	7
76	A new optimization phase for scientific workflow management systems. Future Generation Computer Systems, 2014, 36, 352-362.	7.5	16
77	ADO: A disease ontology representing the domain knowledge specific to Alzheimer's disease. Alzheimer's and Dementia, 2014, 10, 238-246.	0.8	77
78	Linking hypothetical knowledge patterns to disease molecular signatures for biomarker discovery in Alzheimer's disease. Genome Medicine, 2014, 6, 97.	8.2	6
79	Detecting miRNA Mentions and Relations in Biomedical Literature. F1000Research, 2014, 3, 205.	1.6	19
80	Detecting miRNA Mentions and Relations in Biomedical Literature. F1000Research, 2014, 3, 205.	1.6	22
81	Pathway Based Analysis of Genes and Interactions Influencing Porcine Testis Samples from Boars with Divergent Androstenone Content in Back Fat. PLoS ONE, 2014, 9, e91077.	2.5	9
82	Challenges in mining the literature for chemical information. RSC Advances, 2013, 3, 16194.	3.6	20
83	A network model of genomic hormone interactions underlying dementia and its translational validation through serendipitous off-target effect. Journal of Translational Medicine, 2013, 11, 177.	4.4	2
84	HuPSON: the human physiology simulation ontology. Journal of Biomedical Semantics, 2013, 4, 35.	1.6	7
85	Challenges and opportunities for oncology biomarker discovery. Drug Discovery Today, 2013, 18, 614-624.	6.4	44
86	SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling. Molecular Informatics, 2013, 32, 241-249.	2.5	4
87	â€~HypothesisFinder:' A Strategy for the Detection of Speculative Statements in Scientific Text. PLoS Computational Biology, 2013, 9, e1003117.	3.2	37
88	From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine. EPMA Journal, 2013, 4, 23.	6.1	46
89	Biomarker-guided translation of brain imaging into disease pathway models. Scientific Reports, 2013, 3, 3375.	3.3	6
90	A new optimization phase for scientific workflow management systems. , 2012, , .		9

#	Article	IF	CITATIONS
91	Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. Journal of Biomedical Informatics, 2012, 45, 885-892.	4.3	251
92	Mining biomarker information in biomedical literature. BMC Medical Informatics and Decision Making, 2012, 12, 148.	3.0	36
93	Text mining in livestock animal science: Introducing the potential of text mining to animal sciences 1. Journal of Animal Science, 2012, 90, 3666-3676.	0.5	5
94	Challenges in the association of human single nucleotide polymorphism mentions with unique database identifiers. BMC Bioinformatics, 2011, 12, S4.	2.6	33
95	A UNICORE Plugin for HPC-Enabled Scientific Workflows in Taverna 2.2. , 2011, , .		6
96	PLIO: an ontology for formal description of protein–ligand interactions. Bioinformatics, 2011, 27, 1684-1690.	4.1	6
97	An Improved Weightedâ€Residue Profile Based Method of Using Protein–Ligand Interaction Information in Increasing Hits Selection from Virtual Screening: A Study on Virtual Screening of Human GPCR A2A Receptor Antagonists. Molecular Informatics, 2010, 29, 781-791.	2.5	2
98	In Silico Drug Discovery Approaches on Grid Computing Infrastructures. Current Clinical Pharmacology, 2010, 5, 37-46.	0.6	12
99	DockFlow: Achieving interoperability of protein docking tools across heterogeneous Grid middleware. International Journal of Ad Hoc and Ubiquitous Computing, 2010, 6, 235.	0.5	3
100	Identification of histone modifications in biomedical text for supporting epigenomic research. BMC Bioinformatics, 2009, 10, S28.	2.6	7
101	WISDOM-II: Screening against multiple targets implicated in malaria using computational grid infrastructures. Malaria Journal, 2009, 8, 88.	2.3	29
102	Concept-Based Semi-Automatic Classification of Drugs. Journal of Chemical Information and Modeling, 2009, 49, 1986-1992.	5.4	21
103	A robust framework for rapid deployment of a virtual screening laboratory. Studies in Health Technology and Informatics, 2009, 147, 212-21.	0.3	2
104	Grid-enabled Virtual Screening Against Malaria. Journal of Grid Computing, 2008, 6, 29-43.	3.9	56
105	Grid-Added Value to Address Malaria. IEEE Transactions on Information Technology in Biomedicine, 2008, 12, 173-181.	3.2	8
106	OSIRISv1.2: A named entity recognition system for sequence variants of genes in biomedical literature. BMC Bioinformatics, 2008, 9, 84.	2.6	31
107	Detection of IUPAC and IUPAC-like chemical names. Bioinformatics, 2008, 24, i268-i276.	4.1	102
108	Knowledge environments representing molecular entities for the virtual physiological human. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3091-3110.	3.4	19

#	Article	IF	CITATIONS
109	@neuLink: a service-oriented application for biomedical knowledge discovery. Studies in Health Technology and Informatics, 2008, 138, 165-72.	0.3	11
110	Reconstruction of Chemical Molecules from Images. , 2007, 2007, 4609-12.		15
111	Identification of new drug classification terms in textual resources. Bioinformatics, 2007, 23, i264-i272.	4.1	33
112	IDENTIFYING GENE-SPECIFIC VARIATIONS IN BIOMEDICAL TEXT. Journal of Bioinformatics and Computational Biology, 2007, 05, 1277-1296.	0.8	15
113	Alternative to Consensus ScoringA New Approach Toward the Qualitative Combination of Docking Algorithms. Journal of Chemical Information and Modeling, 2007, 47, 1036-1044.	5.4	28
114	Virtual screening on large scale grids. Parallel Computing, 2007, 33, 289-301.	2.1	27
115	Design of New Plasmepsin Inhibitors:  A Virtual High Throughput Screening Approach on the EGEE Grid. Journal of Chemical Information and Modeling, 2007, 47, 1818-1828.	5.4	46
116	Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?. Malaria Journal, 2006, 5, 110.	2.3	18
117	Hyaluronan-oligosaccharide-induced transcription of metalloproteases. Journal of Cell Science, 2004, 117, 359-367.	2.0	149
118	Detecting miRNA Mentions and Relations in Biomedical Literature. F1000Research, 0, 3, 205.	1.6	17