Araxi O Urrutia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1922183/publications.pdf

Version: 2024-02-01

42 papers 2,699 citations

³⁹⁴⁴²¹ 19 h-index 289244 40 g-index

45 all docs

45 docs citations

45 times ranked

4438 citing authors

#	Article	IF	CITATIONS
1	Sex differences in immune gene expression in the brain of a small shorebird. Immunogenetics, 2022, 74, 487-496.	2.4	3
2	Lack of age-related mosaic loss of W chromosome in long-lived birds. Biology Letters, 2022, 18, 20210553.	2.3	2
3	MeDAS: a Metazoan Developmental Alternative Splicing database. Nucleic Acids Research, 2021, 49, D144-D150.	14.5	13
4	Emergence of co-expression in gene regulatory networks. PLoS ONE, 2021, 16, e0247671.	2.5	35
5	Inferring Adaptive Codon Preference to Understand Sources of Selection Shaping Codon Usage Bias. Molecular Biology and Evolution, 2021, 38, 3247-3266.	8.9	14
6	Chicxulub museum, geosciences in Mexico, outreach and science communication $\hat{a} \in \text{``built from the crater up. Geoscience Communication, 2021, 4, 267-280.}$	0.9	0
7	Contrasting geneâ€level signatures of selection with reproductive fitness. Molecular Ecology, 2021, , .	3.9	1
8	Rats exhibit age-related mosaic loss of chromosome Y. Communications Biology, 2021, 4, 1418.	4.4	5
9	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	27.8	251
10	Expression Evolution of Ancestral XY Gametologs across All Major Groups of Placental Mammals. Genome Biology and Evolution, 2020, 12, 2015-2028.	2.5	13
11	Sex determination systems in reptiles are related to ambient temperature but not to the level of climatic fluctuation. BMC Evolutionary Biology, 2020, 20, 103.	3.2	17
12	Transcriptional, Behavioral and Biochemical Profiling in the 3xTg-AD Mouse Model Reveals a Specific Signature of Amyloid Deposition and Functional Decline in Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 602642.	2.8	3
13	Viviparous Reptile Regarded to Have Temperature-Dependent Sex Determination Has Old XY Chromosomes. Genome Biology and Evolution, 2020, 12, 924-930.	2.5	37
14	Conditional expression explains molecular evolution of social genes in a microbe. Nature Communications, 2019, 10, 3284.	12.8	19
15	Demographic Histories and Genome-Wide Patterns of Divergence in Incipient Species of Shorebirds. Frontiers in Genetics, 2019, 10, 919.	2.3	14
16	Conserved transcriptomic profiles underpin monogamy across vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1331-1336.	7.1	75
17	Postmitotic cell longevity–associated genes: a transcriptional signature of postmitotic maintenance in neural tissues. Neurobiology of Aging, 2019, 74, 147-160.	3.1	4
18	Alternative splicing and the evolution of phenotypic novelty. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150474.	4.0	179

#	Article	IF	CITATIONS
19	Perspectives on the history of evo-devo and the contemporary research landscape in the genomics era. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150473.	4.0	14
20	Modular reorganization of the global network of gene regulatory interactions during perinatal human brain development. BMC Developmental Biology, 2016, 16, 13.	2.1	5
21	Neocortex expansion is linked to size variations in gene families with chemotaxis, cell–cell signalling and immune response functions in mammals. Open Biology, 2016, 6, 160132.	3.6	0
22	Optimization of nextâ€generation sequencing transcriptome annotation for species lacking sequenced genomes. Molecular Ecology Resources, 2016, 16, 446-458.	4.8	23
23	Lineageâ€specific sequence evolution and exon edge conservation partially explain the relationship between evolutionary rate and expression level in A.Âthaliana. Molecular Ecology, 2015, 24, 3093-3106.	3.9	11
24	Alternative Splice in Alternative Lice. Molecular Biology and Evolution, 2015, 32, 2749-2759.	8.9	29
25	YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature, 2015, 521, 217-221.	27.8	237
26	Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132428.	2.6	12
27	Correcting for Differential Transcript Coverage Reveals a Strong Relationship between Alternative Splicing and Organism Complexity. Molecular Biology and Evolution, 2014, 31, 1402-1413.	8.9	124
28	Presence–Absence Variation in A. thaliana Is Primarily Associated with Genomic Signatures Consistent with Relaxed Selective Constraints. Molecular Biology and Evolution, 2014, 31, 59-69.	8.9	36
29	Genes That Escape X-Inactivation in Humans Have High Intraspecific Variability in Expression, Are Associated with Mental Impairment but Are Not Slow Evolving. Molecular Biology and Evolution, 2013, 30, 2588-2601.	8.9	113
30	Evidence for Deep Phylogenetic Conservation of Exonic Splice-Related Constraints: Splice-Related Skews at Exonic Ends in the Brown Alga Ectocarpus Are Common and Resemble Those Seen in Humans. Genome Biology and Evolution, 2013, 5, 1731-1745.	2.5	6
31	Alternative Splicing: A Potential Source of Functional Innovation in the Eukaryotic Genome. International Journal of Evolutionary Biology, 2012, 2012, 1-10.	1.0	66
32	Protein Amino Acid Composition: A Genomic Signature of Encephalization in Mammals. PLoS ONE, 2011, 6, e27261.	2.5	5
33	Increased levels of noisy splicing in cancers, but not for oncogene-derived transcripts. Human Molecular Genetics, 2011, 20, 4422-4429.	2.9	32
34	Do Alu repeats drive the evolution of the primate transcriptome?. Genome Biology, 2008, 9, R25.	9.6	19
35	Splicing and the Evolution of Proteins in Mammals. PLoS Biology, 2007, 5, e14.	5.6	94
36	Chromatin remodelling is a major source of coexpression of linked genes in yeast. Trends in Genetics, 2007, 23, 480-484.	6.7	87

3

#	Article	IF	CITATION
37	A unification of mosaic structures in the human genome. Human Molecular Genetics, 2003, 12, 2411-2415.	2.9	119
38	The Signature of Selection Mediated by Expression on Human Genes. Genome Research, 2003, 13, 2260-2264.	5.5	227
39	Evidence That the Human X Chromosome Is Enriched for Male-Specific but not Female-Specific Genes. Molecular Biology and Evolution, 2003, 20, 1113-1116.	8.9	112
40	Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nature Genetics, 2002, 31, 180-183.	21.4	496
41	Codon Usage Bias Covaries With Expression Breadth and the Rate of Synonymous Evolution in Humans, but This Is Not Evidence for Selection. Genetics, 2001, 159, 1191-1199.	2.9	135
42	Fast species diversification among dragonflies (Anisoptera: Odonata: Insecta) inhabiting lentic environments regardless of wing pigmentation. Ecological Entomology, 0, , .	2.2	2